Optimizing Car Body Models with GENESIS

Shrinivas Lankalapalli R & D Engineer Vanderplaats Research & Development, Inc.

October 28, 2014 2014 VR&D Users Conference Oct. 27-28, Monterey CA

Introduction

 Structural Optimization in car body design

	Preliminary	Stiffness	Strength	Final design	Reinforcement	Bonding
Sizing	yes	yes	yes	yes	yes	occasionally
Shape	yes	yes	yes	yes	-	-
Topology	yes	yes	-	occasionally	yes	yes
Topometry	yes	yes	-	occasionally	yes	yes
Topography	yes	yes	-	occasionally	yes	-
Freeform	yes	yes	-	occasionally	yes	-

Design of Car Bodies

- Apply methods to large scale models
 - Maximize torsional stiffness of BIW
 - Minimize strain energy of BIW

2012 Toyota Camry BIW

Source: National Crash Analysis Center (http://www.ncac.gwu.edu/)

Maximize Torsional Stiffness of BI

Torsional stiffness = $P^{L/tan^{-1}}(d/L)$

Torsional stiffness is maximized by Sizing, Topometry, Topography and Shape optimization

Sizing Optimization

Optimization problem:

Maximize Torsional stiffness s.t. Mass <= Initial mass Design variables: thickness of 124 PSHELLS

Sizing Optimization

Topometry Optimization

Optimization problem:

Maximize Torsional stiffness

s.t.

Mass <= Initial mass

Design variables: thicknesses of shell elements

Coarse topometry with mirror symmetry about XZ- plane of local CSYS

Topometry Optimization

Topography Optimization

Optimization problem:

Maximize Torsional stiffness

s.t.

Mass <= Initial mass

Design variables: Grid locations of shells normal to surface

5% of grids moved with mirror symmetry about XZ- plane of local CSYS

Topography Optimization

Normalized Objective

-1.12

1.11

-1.10

1.09

1.08

1.07

 11.3 % increase in torsional stiffness with no mass change

Shape Optimization

Optimization problem:

Maximize Torsional stiffness

s.t.

Mass <= Initial mass

Design variables: Magnitude of perturbations on shape domains

Shape Domains

Shape Optimization

Combined Topometry & Shape Optimization

<u>Result</u>:

 38.53 % increase in torsional stiffness with no mass change

% Increase in Torsional Stiffness

Combined Topology & Shape Optimization

Optimization problem:

Minimize Strain Energy

s.t.

Mass Fraction <= 0.1 Symmetry about XZ- plane of local CSYS

Model:

- 737,836 solid elements
- 5,478,486 DOFs
- 10 static loadcases (4 with SPC and 6 with inertia relief)

- 737,836 Topology design variables
- 1,477 shape design variables

Floor Shape Domains

Freeform: Each perturbation is controlled by a separate design variable

Top Shape Domains

Freeform: Each perturbation is controlled by a separate design variable

BIW Topology & Shape Result /

BODY IN WHITE SOLID ELEMENT TOPOLOGY BLANK MODEL MF=0.10, INERTIA RELIEF IMPACT CASES TOPOLOGY DESIGN ELEMENT DENSITY, DESIGN CYCLE NUMBER = 1.0 0 0.9-0.8-0.7 0.6-0.5-0.4-0.3-0.2 0.1-0.0-X

Cycle 26 Shape Change XYZ Magnitude

Combined Shape & Topology Isosurface

Combined Shape & Topology Isosurface

Floor cutaway view

Roof cutaway view

- GENESIS provides powerful methods for optimization
- GENESIS can efficiently solve large scale structural optimizing problems in industry