

Advanced Capability & Application of Genesis Software Sizing

Advanced Vehicle Development and CAE General Motors

Acknowledgment GM Vehicle Optimization and CAE Teams (AVD-CAE)

Ranga Chakravarty Shrini Lankalapalli Jong-Eun Kim Joung Choi

October 2, 2018 | Plymouth, MI

Overview

- Example 1ST: Sound Pressure Level (SPL) Optimization
- Example 2S: Handling Large number of Design Constraints

Example 1ST – SPL Optimization

Challenge: SPL for Idle Boom (Full System Model) does not meet Metric

Model Details

Background - One of the key contributor has been determined to be the Front Door. Lower Frequencies of the Front Door directly impact the SPL

Optimization Setup

Design Variable: Orientation of the Anti-Flutter bar

Response Tracking:

- Minimize the average of dynamic velocity magnitudes at 5 grids
- Improve Frequency > F001 Hz door mode

With Flutter Bar (Average Response)

Reducing Model Complexity

Replace Detailed Anti-Flutter bar - Picture make it easy to interpret

*Appreciate Brian Watson adding this Beam capability

-

by beam elements

Sense Checks on Reduced Model Complexity

Design Variables

Design Variables:

- Each blue line has 13 CBAR elements with 1 PBAR
- There are 25 blue lines, i.e. 25 PBAR

Genesis Capability

Selection of 1 out of 25 bars TSELECT capability is very convenient

Topology optimization

Maximizing Summation of Freq by TINDEX is very convenient

*Appreciate J.P. Leiva adding this TSELECT capability

Results and Validation

Validation: The CBAR above was converted to Shell Elem (actual part). The improvement was also observed in the Detailed Model

Example 2S – Large Number of Design Constraints

Challenge:

To benchmark a test problem with large number of active constraints

Background:

In typical optimization jobs, the number of active constraints the optimizer considers is small (of the order of a few 100s at most).

In order to generate large number of active constraints, the constraints need to be enforced at element level.(stress)

There is limited experience on software capability with very large number of active constraints.

- The optimal solution is a fully stressed tapered beam design
- Number of active constraints is 2 * number_of_elements

*Appreciate Gary Vanderplaats for providing this model. It allowed us to explore capability of BIGDOT

Results

							GENESIS			
Problem	Length	No of Beams	NDOF	Stress Cons Value	Section Cons Value (hi/bi)	Potential # of Active constraints	Optimizer	Final Objective	# of Active constraints	Elapsed time
Test?	5000	1000	6000	140,000	20	2 000		542380	1964	15 minutes
16312	3000	1000	0000	140,000	20	2,000		342300	1304	13 minutes
Test4	50000	10000	60000	1,400,000	20	20,000	BIGDOT	1169213	19445	13.8 hours
Test6	62500	12500	75000	1,750,000	20	25000	BIGDOT	6744036	24780	23.9 hours
Test8	75000	15000	90000	2,100,000	20	30,000	BIGDOT	8088700	29846	60.73 hours

* Beam element formulation works best for reasonable D/L aspect ratios

Alternative Options

Problem	Potential		GENESIS		Alternate Software			
Size	# of Active Constraints	Optimizer	Final Mass	Elapsed time	Optimizer	Final Mass	Elapsed time	
Test 2	2,000	DOT	54	6 sec	UNK	54	2 sec	
Test 4	20,000	BIGDOT	1,169	½ day	UNK	7,183 (iter8)	7+ days & running	
Test 6	25000	BIGDOT	6,744	1 day	UNK	7,636 (iter17)	14+ days & running	
Test 8	30,000	BIGDOT	8,088	2 ½ days	UNK	-	FAILED	

Performance Plots

Acknowledgements

GM Contributions:

Ranga Chakravarty Shrini Lankalapalli Jong-Eun Kim Joung Choi

Excellent Support from VR&D

J P Leiva, Brian Watson, Phani Adduri & Gary Vanderplaats

2018 VR&D Users Conference

