
Garret N. Vanderplaats
Founder & Chief Executive Officer

Vanderplaats Research & Development, Inc.
Colorado Springs, CO

MULTIDISCIPLINE
DESIGN

OPTIMIZATION



2

CHAPTER

ONE
1BASIC CONCEPTS

1-1 INTRODUCTION
The concept of optimization is basic to much of what we do in our daily
lives. The desire to run a faster race, win a debate, or increase corporate
profit implies a desire to do or be the best in some sense. In engineering, we
wish to produce the “best quality of life possible with the resources avail-
able.” Thus in “creating” new products, we must use design tools which
provide the desired results in a timely and economical fashion. Numerical
optimization is one of the tools at our disposal.

Imagine if the mass of every vehicle in the United States could be reduced
by only one percent. This would result in an estimated six tenths of one per-
cent improvement in fuel economy [1]. Now consider that the U.S. uses
nearly ten million barrels of gasoline daily and the cost per gallon of gaso-
line is about $3.00 (in 2007). A 0.6% improvement in fuel economy then

He Wants Us To Use Optimization!

“Saving even a few pounds of a vehicle’s weight... could mean
that they would also go faster and consume less fuel. Reducing
weight involves reducing materials, which, in turn, means reducing
cost as well.”

Henry Ford, 1923
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represents nearly a three Billion Dollar savings by the consumers each year!
This does not include the savings in other resources, the reduction in pollut-
ants and other benefits to society.

Now imagine reducing the mass of a 200 passenger commercial air-
craft by only 100Kg. This would add a paying passenger for the life of the
aircraft. Also, it would reduce per passenger mile pollution by one half of
one percent.

These simple examples provide compelling reasons for using design
tools that create more efficient designs. These examples are for the reduc-
tion of mass but we can make the same argument for improving combustion
efficiency or aerodynamic efficiency, improving an injection molding pro-
cess, etc.

Analysis or Design?
In studying design optimization, it is important to distinguish between anal-
ysis and design. 

Analysis is the process of determining the response of a specified com-
ponent or system to its environment. For example, the calculation of
stresses in a structure that result from applied loads is referred to here as
analysis. Or we may wish to determine the lift, drag and pitching moment of
a particular airfoil at one or more flight conditions. 

Design, on the other hand, is used to mean the actual process of defin-
ing the system. For example, structural design entails defining the sizes and
locations of members necessary to support a prescribed set of loads. In com-
putational fluid dynamics (CFD) we may wish to determine the best shape
of an airfoil or the pipe diameters in a Chemical Plant. Clearly, analysis is a
sub-problem in the design process because analysis is how we evaluate the
adequacy of the design. 

Much of the design task in engineering is quantifiable, and so we are
able to use the computer to analyze alternative designs rapidly. The purpose
of numerical optimization is to aid us in rationally searching for the best
design to meet our needs. 

While the emphasis here is on design, it should be noted that these
methods can often be used for analysis as well. Nonlinear structural analysis
is an example where optimization can be used to solve a nonlinear energy
minimization problem. 

Although we may not always think of it this way, design can be defined
as the process of finding the minimum or maximum of some parameter
which may be called the objective function. For the design to be acceptable,
it must also satisfy a certain set of specified requirements called constraints.
That is, we wish to find the constrained minimum or maximum of the objec-
tive function. 
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For example, assume we wish to design an internal-combustion
engine. The design objective could be to maximize combustion efficiency.
The engine may be required to provide a specified power output with an
upper limit on the amount of harmful pollutants which can be emitted into
the atmosphere. The power requirements and pollution restrictions are
therefore constraints on the design. 

The Design Process
Various methods can be used to achieve the design goal. If we are designing
an internal combustion engine, one approach might be through experimen-
tation where many engines are built and tested. The engine providing maxi-
mum economy while satisfying the constraints on the design would then be
chosen for production. Clearly this is a very expensive approach with little
assurance of obtaining a true optimum design. A second approach might be
to define the design process analytically and then to obtain the solution
using differential calculus or the calculus of variations. While this is cer-
tainly an attractive procedure, it is seldom possible in practical applications
to obtain a direct analytical solution because of the complexities of the anal-
ysis and design task. 

Most design organizations now have computer codes capable of ana-
lyzing a design which the engineer considers reasonable. For example, the
engineer may have a computer code which, given the compression ratio, air-
fuel mixture ratio, bore and stroke, camshaft profile and other basic design
parameters, can analyze the internal-combustion engine to predict its effi-
ciency, power output, and emissions. The engineer could then change these
design variables and rerun the program until an acceptable design is
obtained. In other words, the physical experimentation approach where
engines are built and tested is replaced by numerical experimentation, rec-
ognizing that the final step will still be the construction of one or more pro-
totypes to verify our numerical results. 

With the availability of computer codes to analyze the proposed
design, the next logical step is to automate the design process itself. In its
most basic form, design automation may consist of a series of loops in the
computer code which cycle through many combinations of design variables.
The combination which provides the best design satisfying the constraints is
then termed optimum. This approach, often called the “Try them all”
method, has been used with some success and may be quite adequate if the
analysis program uses a small amount of computer time and we have only a
few design variables. However, the cost of this technique increases dramati-
cally as the number of design variables to be changed increases and as the
computer time for a single analysis increases. 

Consider, for example, a design problem described by three variables.
Assume we wish to investigate the designs for 10 values of each variable.
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Assume also that any proposed design can be analyzed in one-tenth of a
central processing unit (CPU) second on a digital computer. There are then
103 combinations of design variables to be investigated, each requiring one-
tenth second for a total of 100 CPU seconds to obtain the desired optimum
design. This would probably be considered an economical solution in most
design situations. However, now consider a more realistic design problem
where 10 variables describe the design. Again, we wish to investigate 10
values of each variable. Also now assume that the analysis of a proposed
design requires 100 CPU seconds on the computer. The total CPU time now
required to obtain the optimum design is 1012 seconds, or roughly 32,000
years of computer time! Clearly, for most practical design problems, a more
rational approach to design automation is needed. 

Numerical optimization techniques offer a logical approach to design
automation, and many algorithms have been proposed over the years. Some
of these techniques, such as linear, quadratic, dynamic, and geometric pro-
gramming algorithms, have been developed to deal with specific classes of
optimization problems. A more general category of algorithms referred to
as nonlinear programming has evolved for the solution of general optimiza-
tion problems. Methods for numerical optimization are referred to collec-
tively as mathematical programming techniques. 

During the nearly 60 year history of mathematical programming there
has been an almost bewildering number of algorithms published for the
solution of numerical optimization problems. The author of each algorithm
usually has numerical examples which demonstrate the efficiency and accu-
racy of the method, and the unsuspecting practitioner will often invest a
great deal of time and effort in programming an algorithm, only to find that
it will not in fact solve the particular optimization problem being attempted.
This often leads to disenchantment with these techniques which can be
avoided if the user is knowledgeable in the basic concepts of numerical
optimization. There is an obvious need, therefore, for a unified, non-theoret-
ical presentation of optimization concepts. 

The purpose here is to attempt to bridge the gap between optimization
theory and its practical applications. The remainder of this chapter will be
devoted to a discussion of the basic concepts of numerical optimization. We
will consider the general statement of the nonlinear constrained optimiza-
tion problem and some (slightly) theoretical aspects regarding the existence
and uniqueness of the solution to the optimization problem. Finally, we will
consider some practical advantages and limitations to the use of these meth-
ods. 

Numerical optimization has traditionally been developed in the opera-
tions research community. The use of these techniques was introduced to
engineering design in 1960 when Schmit [2] applied nonlinear optimization
techniques to structural design and coined the phrase “structural synthesis.”
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While the work of Ref. 2 was restricted to structural optimization, the con-
cepts presented there offered a fundamentally new approach to engineering
design which is applicable to a wide spectrum of design problems. The
basic concept is that the purpose of design is the allocation of scarce
resources [3]. The purpose of numerical optimization is to provide a com-
puter tool to aid the designer in this task. 

This book may be considered to be a modification and extension on an
earlier text by this author [4]. Here, we will consider a more limited number
of algorithms, focusing on those which provide basic understanding or
which have been demonstrated to be powerful and reliable. Beyond this, we
will focus on Multidiscipline Design Optimization (MDO) where several
separate disciplines are included in the design process. Finally, we will pro-
vide more practical examples of how optimization can be used to improve
designs.

1-2 MULTIDISCIPLINE SYSTEMS
Almost everything engineers design includes the consideration of multiple
disciplines. Most of the time, the disciplines are considered separately. For
example, designing the floor panel on an automobile is a structural design
problem while the air induction system includes both fluid mechanics and
structural considerations. However, even for the air induction system, the
two disciplines usually are not considered simultaneously. That is, the shape
of the air induction system is defined based on air flow (and perhaps pack-
aging) considerations and the structure is then designed. This is why most
engineering organizations are separated into departments, each specializing
in a particular discipline such as structures, aerodynamics, thermodynamics,
electromechanics, mechanical components, etc. A designer then calls upon
these specialists as needed for a particular system being designed.

An example of a design where several disciplines are considered is the
turbojet engine shown in Figure 1.1. 

Figure 1.1 Turbojet Engine.
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The turbojet is considered to be the simplest of all jet engines, yet it is clear
that the interactions between the structure, fluid flow and combustion pro-
cess are very complex. Even if we just look at a single blade in the turbine,
we must consider material, structural, thermal and fluid flow disciplines.
Because of these complexities, we rely heavily on computer software to
evaluate any proposed designs. Also, it is important to note that the figure is
just a very simple portrayal of the real engine. An actual engine includes
pumps, pipes, valves, electronic controls and a host of other components.

The turbojet is just one component of a larger system, in this case prob-
ably an aircraft. Therefore, we can see that design of real systems is an
extremely complex task. However, it is important to remember that we
designed very complex systems long before we had computers, computer
aided engineering, etc. This observation forms the basis for the design phi-
losophy presented in this text. In other words, our goal will be to present
methods that make the design task faster and easier while recognizing that
traditional design methods have worked very well. If we use the optimiza-
tion tools available at every opportunity, we can greatly enhance the tradi-
tional design process to design better systems in less time than with any
other known methods.

1-3 OPTIMIZATION CONCEPTS 
Here we will briefly describe the basic concepts of optimization by means
of a physical example and two numerical examples. 

Example 1-1 A Physical Optimization Problem
Consider a little boy standing on a hillside, wearing a blindfold as
shown in Figure 1.2. He wishes to find the highest point on the hill that
is inside the two fences. Now, because of the blindfold, he cannot just
look up the hill and go straight to the “optimum” point. He must some-
how search for the high point. Consider how he may do this. He may
take a small step in the north-south direction and a small step in the
east-west direction. From this, he can sense the slope of the hill and
then search in the upward direction. In a mathematical sense, what he
has done is calculate the direction of steepest ascent by calculating the
gradient by finite difference methods.

He can now search in the is steepest ascent direction until he
crosses the crown of the hill or encounters a fence.
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Figure 1.2 The Physical Problem.

If we store his initial location (longitude and latitude) in a vector, X0,
we can call this the vector of “design variables.” The steepest ascent
direction is also a vector that we can store in a “search direction” vec-
tor, S1. He can now search in this is steepest ascent direction until he
crosses the crown of the hill or encounters a fence. In this case, he
encounters a fence as shown in Figure 1.3.

Figure 1.3 The Optimization Process.

YOU CAN
TRY, BUT
STAY INSIDE
THE FENCES

BET I CAN
FIND THE
TOP OF THE
HILL!
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We will call his location at the fence, X1 to indicate that this is the end
of the first iteration in our search up the hill.

Note that the design vector, X1, is given as

where  is the number of steps in direction S1 that he took to reach
X2 and partial steps are allowed.

At X1 he can repeat the process of taking a small step in the north-
south and east-west directions. Now, in addition to calculating the gra-
dient (slope) of the hill, he will calculate the gradient of the fence,
which is the outward normal vector to the fence at X1.

Using this gradient information, he can determine a new search
direction, S2, which will continue to move him up the hill while “push-
ing” away from the fence. Note that if he tries to follow the curved
fence, he cannot move in a straight line without moving outside the
fence. Because he wants to move in a straight line as far as possible, he
pushes away from the fence.

By finding a direction that moves him up the hill, he has found a
“usable” search direction and by finding a direction that stays inside
the fences, he has found a “feasible” direction.

He now searches in direction S2 until he encounters the second
fence at design point X2. 

He now repeats the process again to determine a search direction,
S3. Here, we assume he knows the fence is straight (a linear function)
so he can search in a direction tangent to the fence. If he did not know
the fence is straight, he would push away from it as before and “zig-
zag” his way up the hill. 

Searching in direction S3 leads him to the highest point on the hill
inside the fences. He can no longer find a search direction that will
continue up the hill without going outside the fences and so he con-
cludes that he has reached the highest possible point. In other words,
he has found the “constrained optimum.”

He can now remove the blindfold and he may see that there are
actually higher points elsewhere on the hill and also inside the fences.
The search method we used only assures him of achieving a “local”
optimum and does not guarantee the “global” optimum. This is often
noted as a weakness of gradient based optimization methods used here.
However, remember that we have made significant improvement, even
if we cannot guarantee the absolute best. This, in fact, models the typi-
cal engineering environment where we are pleased to make improve-

X1 X0 α*S1+=

α*
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ments in the time available. Without optimization, engineers seldom
achieve even a local optimum and never even ask about global optimi-
zation until some expert tells them to.

In practice, we may begin outside the fences and our first priority
will be to find a search direction back inside the fences to the “feasi-
ble” region. Indeed, one of the most effective uses of optimization is to
find an acceptable design when our current design violates one or more
design criteria.

The method described above is a physical interpretation of Zou-
tendijk’s Method of Feasible Directions, first published in 1960 [5].
The concept of finding a “usable-feasible” direction as was done here
is fundamental to much of optimization theory. Finally, note that here
we maximized the function (elevation). Normally, we will minimize
our objective function. If we wish to maximize, we simply minimize
the negative of the function.

Example 1-2 Unconstrained Function Minimization
In the example above, we considered an optimization task where
fences, or constraints, limit the design. If there are no such “fences, we
have an unconstrained problem. This may be thought of as the simplest
of optimization tasks because we know from basic calculus that we are
seeking the point where the gradient of the function vanishes.

Assume we wish to find the minimum value of the following sim-
ple algebraic function. 

(1.1)

F(X) is referred to as the objective function which is to be minimized,
and we wish to determine the combination of the variables X1 and X2
which will achieve this goal. The vector X contains X1 and X2 and we
call them the design, or decision, variables. That is,

(1.2)

No limits are imposed on the values of X1 and X2 and no additional
conditions must be met for the “design” to be acceptable. Therefore,
F(X) is said to be unconstrained. Figure 1.4 is a graphical representa-
tion of the function, where lines of constant value of F(X) are drawn.
This function is often referred to as the banana function because of its
distinctive geometry. Figure 1.4 is referred to as a two-variable func-
tion space, or two variable design space, where the design variables X1

F X( ) 10X1
4 20X1

2X2– 10X2
2 X1

2 2X1 5+–+ +=

X
X1

X2⎩ ⎭
⎨ ⎬
⎧ ⎫

=
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and X2 correspond to the coordinate axes. In general, a design space
will be n dimensional, where n is the number of design variables of
which the objective is a function. The two-variable design space will
be used throughout our discussion of optimization techniques to help
visualize the various concepts. 

Figure 1.4 Two-variable function space. 
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From Figure 1.4 we can estimate that the minimum value of F(X) will
occur at  and . We know also from basic calculus that
at the optimum, or minimum, of F(X), the partial derivatives with
respect to X1 and X2 must vanish. That is 

(1.3)

(1.4)

Solving for X1 and X2, we find that indeed  and . We
will see later that the vanishing gradient is a necessary but not suffi-
cient condition for finding the minimum. 

In this example, we were able to obtain the optimum both graphi-
cally and analytically. However, this example is of little engineering
value, except for demonstration purposes. In most practical engineer-
ing problems the minimum of a function cannot be determined analyti-
cally. The problem is further complicated if the decision variables are
restricted to values within a specified range or if other conditions are
imposed in the minimization problem. Therefore, numerical tech-
niques are needed. We will now consider a simple design example
where conditions (constraints) are imposed on the optimization prob-
lem.

Example 1-3 Constrained function minimization 
Figure 1.5a depicts a tubular column of height h which is required to
support a concentrated load P as shown. We wish to find the mean
diameter D and the wall thickness t to minimize the weight of the col-
umn. The column weight is given by 

(1.5)

where A is the cross-sectional area and ρ is the material's unit weight. 
We will consider the axial load only, and for simplicity will ignore

any eccentricity, lateral loads, or column imperfections. The stress in
the column is given by

(1.6)

X1
* 1= X2

* 1=

X1∂
∂ F X( ) 40X1

3 40X1X2– 2X1 2–+ 0= =

X2∂
∂ F X( ) 20X1

2– 20X2 0=+=

X1
* 1= X2

* 1=

W ρAh ρπDth= =

σ P
A
--- P

πDt
----------= =
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where stress is taken as positive in compression. In order to prevent
material failure, this stress must not exceed the allowable stress . In
addition to preventing material failure, the stress must not exceed that
at which Euler buckling or local shell buckling will occur, as shown in
Figs. 1.5b and c. The stress at which Euler buckling occurs is given by 

(1.7)

where E = Young's modulus 
I = moment of inertia 

Figure 1.5 Column design for least weight. 

The stress at which shell buckling occurs is given by 

(1.8)

where  = Poisson's ratio
The column must now be designed so that the magnitude of the

stress is less than the minimum of , , and . These requirements
can be written algebraically as 

(1.9)

σ

σb
π2EI
4Ah2
------------ π2E D2 t2+( )

32h2
--------------------------------= =

t

h

σs
2Et

D 3 1 ν2–( )
-------------------------------=

ν

σ σb σs

σ σ≤
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(1.10)

(1.11)

In addition to the stress limitations, the design must satisfy the geomet-
ric conditions that the mean diameter be greater than the wall thickness
and that both the diameter and thickness be positive 

(1.12)

(1.13)

(1.14)

Bounds of 10-6 are imposed on D and t to ensure that  in Eq. (1.6)
and  in Eq. (1.8) will be finite. 

The design problem can now be stated compactly as 

Minimize: (1.15)

Subject to: 

(1.16a)

(1.16b)

(1.16c)

 (1.16d)

(1.17a)

(1.17b)

where , , and  are given by Eqs. (1.6), (1.7), and (1.8), respec-
tively. To summarize, Eq. 1.15 defines the objective function and Eqs.
1.16a - 1.16d and 1.17a, 1.17b define the constraints on the design

σ σb≤

σ σs≤

D t≥

D 10 6–≥

t 10 6–≥

σ
σs

W D t( , ) ρπDth=

g1 D t,( ) σ
σ
--- 1– 0≤=

g2 D t,( ) σ
σb
------ 1– 0≤=

g3 D t,( ) σ
σs
----- 1– 0≤=

g4 D t,( ) t D– 0≤=

D 10 6–≥

t 10 6–≥

σ σb σs
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problem. Note that Eq. 1.16a to c is just a normalized form of Eqs. 1.9
to 1.11. The constraints given by Eq. 1.17a and 1.17b are referred to as
side constraints because they directly impose bounds on the value of
the design variables. Figure 1.6 is the design space associated with the
column design problem. In addition to contours of constant objective,
the constraint boundaries  are also drawn in the design
space. That portion of the design space inside the constraint boundaries
defined by the hatched lines is referred to as the feasible design space,
and all designs in this region are acceptable. Any design which violates
these constraint boundaries is unacceptable and is referred to as infea-
sible. This figure represents a simple example of the general nonlinear
constrained optimization problem. 

Figure 1.6 Two-variable function space for column. 
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It is interesting to note that the optimum design is not unique. There are
a range of values of D and t that give the same optimum value of the
objective function.

1-4 GENERAL PROBLEM STATEMENT 
We can now write the nonlinear constrained optimization problem mathe-
matically as follows: 

Minimize: objective function (1.18)

Subject to: 

j=1,m inequality constraints (1.19)

k=1,l equality constraints (1.20)

i=1,n side constraints (1.21)

where design variables

The vector X is referred to as the vector of design variables. In the column
design given above, this vector would contain the two variables D and t.
The objective function F(X) given by Eq. 1.18, as well as the constraint
functions defined by Eqs. 1.19 and 1.20 may be linear or nonlinear func-
tions of the design variables X. These functions may be explicit or implicit
in X and may be evaluated by any analytical or numerical techniques we
have at our disposal. Indeed, these functions could actually be measured
experimentally. However, except for special classes of optimization prob-
lems, it is important that these functions be continuous and have continuous
first derivatives in X. 

In the column design example, we considered only inequality con-
straints of the form given by Eq. 1.19. Additionally, we now include the set

F X( )

gj X( ) 0≤

hk X( ) 0=

Xi
l Xi Xi

u≤ ≤

X

X1

X2

X3

.

.

.
Xn⎩ ⎭

⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

=
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of equality constraints hk(X) as defined by Eq. 1.20. If equality constraints
are explicit in X, they can often be used to reduce the number of design
variables considered. For example, in the column design problem, we may
wish to require the thickness be one-tenth the value of the diameter, that is,
t = 0.1D. This information could be substituted directly into the problem
statement to reduce the design problem to one in diameter D only. In gen-
eral, h(X) may be either a very complicated explicit function of the design
variables X or may be implicit in X. 

Equation 1.21 defines bounds on the design variables X and so is
referred to as side constraints. Although side constraints could be included
in the inequality constraint set given by Eq. 1.19, it is usually convenient to
treat them separately because they define the region of search for the opti-
mum. 

The above form of stating the optimization problem is not unique, and
various other statements equivalent to this are presented in the literature.
For example, we may wish to state the problem as a maximization problem
where we desire to maximize F(X). Similarly, the inequality sign in Eq.
1.19 can be reversed so that g(X) must be greater than or equal to zero.
Using our notation, if a particular optimization problem requires maximiza-
tion, we simply minimize -F(X). The choice of the non-positive inequality
sign on the constraints has the geometric significance that, at the optimum,
the gradients of the objective and all critical constraints point away from the
optimum design. 

1-5 THE ITERATIVE OPTIMIZATION 
PROCEDURE

Most optimization algorithms require that an initial set of design variables,
X0, be specified. Beginning from this starting point, the design is updated
iteratively. Probably the most common form of this iterative procedure is
given by 

(1.22)

where q is the iteration number and S is a vector search direction in the
design space. The scalar quantity α* defines the distance that we wish to
move in direction S. 

Note that  represents a perturbation on X so Eq. 1.22 could be
written as;

(1.23)

Xq Xq 1–= α*Sq+

α*Sq

Xq Xq 1–= δX+
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Therefore, Eq. 1.22 is very similar to the usual engineering approach of
Eq. 1.23 where we perturb an existing design to achieve some improve-
ment.

To see how the iterative relationship given by Eq. 1.22 is applied to the
optimization process, consider the two-variable problem shown in Figure
1.7.

Figure 1.7 Search in direction S. 

Assume we begin at point X0 and we wish to reduce the objective function.
We will begin by searching in the direction S1 given by 

(1.24)

The choice of S is somewhat arbitrary as long as a small move in this direc-
tion will reduce the objective function without violating any constraints. In
this case, the S1 vector is approximately the negative of the gradient of the

S1 1.0–
0.5–⎩ ⎭

⎨ ⎬
⎧ ⎫

=
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objective function, that is, the direction of steepest descent. It is now neces-
sary to find the scalar α* in Eq. 1.22 so that the objective is minimized in
this direction without violating any constraints. 

We now evaluate X and the corresponding objective and constraint
functions for several values of α to give 

(1.25a)

(1.25b)

(1.25c)

(1.25d)

where the objective and constraint values are estimated using Figure 1.7. In
practice, we would evaluate these functions on the computer, and, using
several proposed values of α, we would apply a numerical interpolation
scheme to estimate α*. This would provide the minimum F(X) in this
search direction which does not violate any constraints. Note that by search-
ing in a specified direction, we have actually converted the problem from
one in n variables X to one variable α. Thus, we refer to this as a one-
dimensional search. At point X1, we must find a new search direction such
that we can continue to reduce the objective without violating constraints.
In this way, Eq. 1.22 is used repetitively until no further design improve-
ment can be made. 

From this simple example, it is seen that nonlinear optimization algo-
rithms based on Eq. 1.22 can be separated into two basic parts. The first is
determination of a direction of search, S, which will improve the objective

α 0= X
2.0
1.0⎩ ⎭

⎨ ⎬
⎧ ⎫

=

F α 0=( ) 10.0= g α 0=( ) 1.0–=

α 1.0= X
2.0
1.0⎩ ⎭

⎨ ⎬
⎧ ⎫

= 1.0
1.0–
0.5–⎩ ⎭

⎨ ⎬
⎧ ⎫ 1.0

0.5⎩ ⎭
⎨ ⎬
⎧ ⎫

=+

F α 1.0=( ) 8.4≈ g α 1.0=( ) 0.2–≈

α 1.5= X
2.0
1.0⎩ ⎭

⎨ ⎬
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function subject to constraints. The second is determination of the scalar
parameter α∗ defining the distance of travel in direction S. Each of these
components plays a fundamental role in the efficiency and reliability of a
given optimization algorithm, and each will be discussed in detail in later
chapters. 

1-6 EXISTENCE AND UNIQUENESS OF AN 
OPTIMUM SOLUTION

In the application of optimization techniques to design problems of practical
interest, it is seldom possible to ensure that the absolute optimum design
will be found. This may be because multiple solutions to the optimization
problem exist or simply because numerical ill-conditioning in setting up the
problem results in poor convergence of the optimization algorithm. From a
practical standpoint, the best approach is usually to start the optimization
process from several different initial vectors, and if the optimization results
in essentially the same final design, we can be reasonably assured that this
is the true optimum. It is, however, possible to check mathematically to
determine if we at least have a relative minimum. In other words, we can
define necessary conditions for an optimum, and we can show that under
certain circumstances these necessary conditions are also sufficient to
ensure that the solution is the global optimum. 

In order to understand why we cannot normally guarantee that an opti-
mum is the absolute best optimum we can find, we need to understand the
concept of convexity and the conditions that exist at an optimum.

1-6.1 Convex Sets 
We can understand the concept of a convex set by referring to Figure 1.8.
The shaded portion of the figures represents the set under consideration. For
example, for a two-dimensional space shown in the figures, any combina-
tion of the coordinates X1, X2 which lie in the shaded area is part of the set. 

Now imagine drawing a straight line connecting any two points within
the set. Examples of this are shown in Figure 1.9. If every point along this
line lies within the set, the set is said to be convex. If any point on the line is
outside the set, the set is said to be non convex. In Figure 1.9a, every point
on the line is clearly inside the set. It is clear from the figure that, choosing
any two points within the set, this is true. On the other hand, the line in Fig-
ure 1.9b is partly inside the set and partly outside the set, and so this set is
said to be non convex. 
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Figure 1.8 Convex and non convex sets. 

We can now mathematically define a convex set. Consider any two points
Xl and X2, each of which lies somewhere within the set or on the boundary.
Points on a line connecting Xl and X2 are defined by 

(1.26)

where θ varies between 0 and l. If all such points w lie within the set for any
choice of Xl and X2 in the set and any value of θ, then the set is convex. For
example, in Figure 1.9a, points on the line connecting A and B are defined
by 

(1.27)

Now letting θ = 0.5, for example, we have 

(1.28)
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Figure 1.9 Mathematical interpretation of convex and nonconvex sets. 

Here the point w corresponds to X1 = 1.5 and X2 = 2.0 and is clearly within
the set. 

Now consider a line connecting points A and B in Figure 1.9b. Points
on this line are defined by 

(1.29)
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Again letting θ = 0.5, we have 

(1.30)

Here X1 = 1.5 and X2 = 2.5, which is clearly outside the set. On the other
hand, if we let θ = 0 in Eq. 1.29, we have point A, which is inside the set.
However, since all points are not in the set, the set is said to be non convex. 

1-6.2 Convex and Concave Functions 
Figure 1.10 provides examples of convex functions, concave functions, and
functions which are neither convex nor concave. 

Figure 1.10 Convex and concave functions. 
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From Figure 1.10a, we can imagine that a convex function is one which will
hold water, for example the shape of a bowl. On the other hand, a concave
function, as shown in Figure 1.10b, will not hold the water (an upside down
bowl). Indeed, mathematically, if a function is convex, the negative of that
function is concave. The functions shown in Figure 1.10c are clearly neither
convex nor concave. Now consider a convex set. A function F(X) bounding
the set is defined mathematically as convex if for any two points Xl and X2

contained in the set 

(1.31)

For example, consider the following optimization problem: 

Minimize: (1.32)

Subject to: 

(1.33)

The two-variable function space, showing contours of constant objective,
and the constraint boundary g(X) = 0 is shown in Figure 1.11. 

Figure 1.11 A convex design space. 
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Now consider points 1 and 2 on the constraint boundary defined by 

(1.34)

This constraint function is convex if any point on the line connecting points
1 and 2 corresponds to a value of g(X) less than or equal to zero, where the
two points may be anywhere on the constraint surface. In this case, we
know that this will be true from our experience in previous examples. To
show that this is mathematically true, consider a value of θ = 0.5 in Eq.
1.31. Here we know that g(X1) and g(X2) both equal zero since they lie on
the contour g(X) = 0. Therefore, we need only to evaluate the left-hand side
of Eq. 1.31, where the general function F(X) in the equation is replaced by
the constraint function g(X). Thus 

(1.35)

and (1.36)

Indeed, we find that for any value of θ between 0 and 1, the constraint value
will be less than or equal to zero, and so the constraint function is convex.

In a similar manner, consider the objective function defined by Eq.
1.32. 
Evaluating F(X) at X1 and X2 gives 

(1.37a)

(1.37b)

Again considering a value of θ = 0.5, we have 

(1.38)

Also, using Eq. 1.32, 
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From Eqs. 1.38 and 1.39, we see that the inequality of Eq. 1.31 is satisfied
(it is satisfied for any 0 < θ < 1) and so the objective function satisfies the
convexity requirement. 

We noted earlier that if the objective and constraint functions can be
shown to be convex, then only one optimum exists and this is the global
optimum. We now see that if the feasible design space is bounded by con-
vex functions and that if the objective is itself convex, then the design space
defines a convex set. While we have not proved this in a mathematical
sense, we have offered sufficient geometric interpretation to at least provide
insight into the fundamental concepts which underlie much of the theoreti-
cal development of nonlinear constrained optimization. The discussion of
convexity and concavity given here is somewhat restricted but is sufficient
for our purposes. References 6 to 13 provide further details of these con-
cepts. 

1-6.3 The Lagrangian and the Kuhn-Tucker Conditions 
We can mathematically define conditions where a design is considered to be
optimum. These are referred to as the Kuhn-Tucker necessary conditions. 

The Kuhn-Tucker conditions define a stationary point of the Lagrang-
ian [7, 13]

(1.40)

All three conditions are listed here for reference and state simply that if the
vector X* defines the optimum design, the following conditions must be
satisfied: 

1.  is feasible (1.41)

2. (1.42)

3. (1.43)

(1.44)

 unrestricted in sign (1.45)
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Equation 1.41 is a statement of the obvious requirement that the optimum
design must satisfy all constraints. Equation 1.42 imposes the requirement
that if the constraint gj(X) is not precisely satisfied [that is, ] then
the corresponding Lagrange multiplier must be zero. Equations 1.43 to 1.45
define the vanishing gradient of the Lagrangian. Note that, if there are no
constraints, Equation 1.43 simply states that the gradient of the objective
function vanishes at the optimum.

The geometric significance of the Kuhn-Tucker conditions can be
understood by referring to Figure 1.12, which shows a two-variable minimi-
zation problem with three inequality constraints. 

We see from the figure that X* is feasible so the first condition is met.
Constraint  is not critical and so, from Eq. 1.42, . Since

 and , the second Kuhn-Tucker condition is satis-
fied identically with respect to these constraints. 

Equation 1.43 requires that, if we multiply the gradient of each critical
constraint [  and ] by its corresponding Lagrange multiplier,
the vector sum of the result must equal the negative of the gradient of the
objective function. Thus

(1.46a)

(1.46b)

Therefore, each of the Kuhn-Tucker necessary conditions is satisfied.
In the problem of Figure 1.12, the Lagrange multipliers are uniquely

determined from the gradients of the objective and the active constraints.
However, we can easily imagine situations where this is not so. For exam-
ple, assume that we have defined another constraint, , which happens
to be identical to  or perhaps a constant times . The constraint
boundaries  and  would now be the same and the
Lagrange multipliers  and  can have any combination of values which
satisfy the vector addition shown in the figure. Thus, we can say that one of
the constraints is redundant. As another example, we can consider a con-
straint  which is independent of the other constraints, but at the opti-
mum in Figure 1.12, constraints ,  and  are all critical.
Now, we may pick many combinations of , , and  which will sat-
isfy the Kuhn-Tucker conditions so that, while all constraints are indepen-
dent, the Lagrange multipliers are not unique. These special cases do not
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detract from the usefulness of the Kuhn-Tucker conditions in optimization
theory. It is only necessary that we account for these possibilities when
using algorithms that require calculation of the Lagrange multipliers.

Figure 1.12 Geometric interpretation of the Kuhn-Tucker conditions.

The question now arises, when are the Kuhn-Tucker conditions both neces-
sary and sufficient to define a global optimum? The answer is simply that if
the design space is convex, the Kuhn-Tucker conditions define a global
optimum. If the design space is not convex, the Kuhn-Tucker conditions
only guarantee that a relative optimum has been found.

For a design space to be convex, the Hessian matrix of the objective
function and all constraints must be positive definite for all possible combi-
nations of the design variables, where the Hessian matrix is the matrix of
second partial derivatives of the function with respect to the design vari-
ables,

X*
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(1.47)

Positive definiteness means that this matrix has all positive eigenvalues. If
the gradient is zero and the Hessian matrix is positive definite for a given X,
this insures that the design is at least a relative minimum, but again it does
not insure that the design is a global minimum. The design is only guaran-
teed to be a global minimum if the Hessian matrix is positive definite for all
possible values of the design variables X. This can seldom be demonstrated
in practical design applications. We must usually be satisfied with starting
the design from various initial points to see if we can obtain a consistent
optimum and therefore have reasonable assurance that this is the true mini-
mum of the function. However, an understanding of the requirements for a
unique optimal solution is important to provide insight into the optimization
process. Also, these concepts provide the basis for the development of many
of the more powerful algorithms which we will be discussing in later chap-
ters. 

1-6.4 Calculating the Lagrange Multipliers
Now consider how we might calculate the values of the Lagrange Multipli-
ers at the optimum. First, we know that if a constraint value is non-zero
(within a small tolerance), then from Eq. 1.42, the corresponding Lagrange
multiplier is equal to zero. For our purposes here, both inequality and equal-
ity constraints are treated the same, so we can treat them all together. It is
only important to remember that the equality constraints will always be
active at the optimum and that they can have positive or negative Lagrange
Multipliers. Also, assuming all constraints are independent, the number of
active constraints will be less than or equal to the number of design vari-
ables. Thus, Eq. 1.43 often has fewer unknown parameters,  than equa-
tions. 

Because precise satisfaction of the Kuhn-Tucker conditions may not be
reached, we can rewrite Eq. 1.43 as
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(1.48)

where the equality constraints are omitted for brevity and R is the vector of
residuals.

Now, because we want the residuals as small as possible (if all compo-
nents of R = 0, the Kuhn-Tucker conditions are satisfied precisely), we can
minimize the square of the magnitude of R. 
Let

(1.49a)

and

(1.49b)

where M is the set of active constraints.
Substituting Eqs. 1.49a and 1.49b into Eq. 1.48,

(1.50)

Now, because we want the residuals as small as possible (if all components
of R = 0, the Kuhn-Tucker conditions are satisfied precisely), we can mini-
mize the square of the magnitude of R. 

Minimize (1.51)

Differentiating Eq. 1.51 with respect to λ and setting the result to zero gives

(1.52)

from which

(1.53)

Now if all components of λ corresponding to inequality constraints are non-
negative, we have an acceptable estimate of the Lagrange multipliers. Also,
we can substitute Eq. 1.53 into Eq. 1.50 to estimate how precisely the
Kuhn-Tucker conditions are met. If all components of the residual vector,
R, are very near zero, we know that we have reached at least a relative min-
imum.
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1-6.5 Sensitivity of the Optimum to Changes in 
Constraint Limits

The Lagrange multipliers have particular significance in estimating how
sensitive the optimum design is to the active constraints. It can be shown
that the derivative of the optimum objective with respect to a constraint is
just the value of the Lagrange multiplier of that constraint, so

(1.54)

or, in more useful form;

(1.55)

If we wish to change the limits on a set of constraints, J, Eq. 1.55 is simply
expanded as

(1.56)

Remember that Eq. 1.55 is the sensitivity with respect to gj. In practice, we
may want to know the sensitivity with respect to bounds on the response. 

Assume we have normalized an upper bound constraint

(1.57)

where R is the response and Ru is the upper bound.

(1.58)

Similarly, for lower bound constraints

(1.59)
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Therefore, the Lagrange multipliers tell us the sensitivity of the optimum
with respect to a relative change in the constraint bounds, while the
Lagrange multipliers divided by the scaling factor (usually the magnitude of
the bound) give us the sensitivity to an absolute change in the bounds.

Example 1-4 Sensitivity of the Optimum
Consider the constrained minimization of a simple quadratic function
with a single linear constraint.

Minimize (1.60)

Subject to; (1.61)

At the optimum;

(1.62a)

and

(1.62b)

Now, assume we wish to change the lower bound on g from 2.0 to 2.1.
From Eq. 1.59 we get

(1.63)

The true optimum for this case is

(1.64)
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1-7 CONCLUDING REMARKS 
In assessing the value of optimization techniques to engineering design, it is
worthwhile to review briefly the traditional design approach. The design is
often carried out through the use of charts and graphs which have been
developed over many years of experience. These methods are usually an
efficient means of obtaining a reasonable solution to traditional design
problems. However, as the design task becomes more complex, we rely
more heavily on the computer for analysis. If we assume that we have a
computer code capable of analyzing our proposed design, the output from
this program will provide a quantitative indication of the acceptability and
optimality of the design. We may change one or more design variables and
rerun the computer program to see if any design improvement can be
obtained. We then take the results of many computer runs and plot the
objective and constraint values versus the various design parameters. From
these plots we can interpolate or extrapolate to what we believe to be the
optimum design. This is essentially the approach that was used to obtain the
optimum constrained minimum of the tubular column shown in Figure 1.5,
and this is certainly an efficient and viable approach when the design is a
function of only a few variables. However, if the design exceeds three vari-
ables, the true optimum may be extremely difficult to obtain graphically.
Thus, assuming the computer code exists for the analysis of the proposed
design, automation of the design process becomes an attractive alternative.
Mathematical programming simply provides a logical framework for carry-
ing out this automated design process. Some advantages and limitations to
the use of numerical optimization techniques are listed here. 

1-7.1 Advantages of Numerical Optimization 
• A major advantage is the reduction in design time – this is especially true 

when the same computer program can be applied to many design proj-
ects. 

• Optimization provides a systematized logical design procedure. 
• We can deal with a wide variety of design variables and constraints 

which are difficult to visualize using graphical or tabular methods. 
• Optimization virtually always yields some design improvement. 
• It is not biased by intuition or experience in engineering. Therefore, the 

possibility of obtaining improved, nontraditional designs is enhanced. 
• Optimization requires a minimal amount of human-machine interaction. 
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1-7.2 Limitations of Numerical Optimization 
• Computational time increases as the number of design variables 

increases. If one wishes to consider all possible design variables, the cost 
of automated design may be prohibitive. Also, as the number of design 
variables increases, these methods tend to become numerically ill-condi-
tioned. 

• Optimization techniques have no stored experience or intuition on which 
to draw. They are limited to the range of applicability of the analysis pro-
gram. 

• If the analysis program is not theoretically precise, the results of optimi-
zation may be misleading, and therefore the results should always be 
checked very carefully. Optimization will invariably take advantage of 
analysis errors in order to provide mathematical design improvements. 

• Most optimization algorithms have difficulty in dealing with discontinu-
ous functions. Also, highly nonlinear problems may converge slowly or 
not at all. This requires that we be particularly careful in formulating the 
automated design problem. 

• It can seldom be guaranteed that the optimization algorithm will obtain 
the globally optimum design. Therefore, it may be desirable to restart the 
optimization process from several different points to provide reasonable 
assurance of obtaining the global optimum. 

• Because many analysis programs were not written with automated 
design in mind, adaptation of these programs to an optimization code 
may require significant reprogramming of the analysis routines. 

1-7.3 Summary 
Optimization techniques, if used effectively, can greatly reduce engineering
design time and yield improved, efficient, and economical designs. How-
ever, it is important to understand the limitations of optimization techniques
and use these methods as only one of many tools at our disposal. 

Finally, it is important to recognize that, using numerical optimization
techniques, the precise, absolute best design will seldom if ever be
achieved. Expectations of achieving the absolute “best” design will invari-
ably lead to “maximum” disappointment. We may better appreciate these
techniques by replacing the word “optimization” with “design improve-
ment,” and recognize that a convenient method of improving designs is an
extremely valuable tool. 
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PROBLEMS 
1-1 Consider the 500-N weight hanging by a cable, as shown in Figure 1.13. A 

horizontal force, F = 100 N, is applied to the weight. Under this force, the 
weight moves from its original position at A to a new equilibrium position at 
B. Ignore the cable weight. The equilibrium position is the one at which the 
total potential energy PE is a minimum, where PE = WY – FX.
a. Write an expression for PE in terms of the horizontal displacement X 

alone. 

b. Write an expression for PE in terms of the angle  alone. 

c. Plot a graph of PE versus  between  and  = . 
d. Find the angle corresponding to the minimum value of PE both graphi-

cally and analytically. Prove that this is a minimum. 

e. Using statics, verify that the  at which PE is minimum is indeed the 
equilibrium position. 

Figure 1.13

1-2 Given the unconstrained function 

a. Calculate the gradient vector and the Hessian matrix.
b. At what combinations of X1 and X2 is the gradient equal to zero? 

c. For each point identified in part b, is the function a minimum, a maximum, 
or neither? 
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1-3 Given the unconstrained function, 

a. At X1 = 2 and X2 = 2, calculate the gradient of F. 

b. At X1 = 2 and X2 = 2, calculate the direction of steepest descent. 

c. Using the direction of steepest descent calculated in part b, update the 
design by the standard formula 

Evaluate X1, X2 and F for  = 0, 0.2, 0.5, and 1.0 and plot the curve of
F versus . 
d. Write the equation for F in terms of  alone. Discuss the character of this 

function. 

e. From part d, calculate  at . 

f. Calculate the scalar product  using the results of parts a and b and 
compare this with the result of part e. 

1-4 Consider the constrained minimization problem: 

Minimize: 
Subject to: 

a. Sketch the two-variable function space showing contours of F = 0, 1, and 
4 as well as the constraint boundaries. 

b. Identify the unconstrained minimum of F on the figure. 
c. Identify the constrained minimum on the figure. 
d. At the constrained minimum, what are the Lagrange multipliers? 

1-5 Given the ellipse , it is desired to find the rectangle of 
greatest area which will fit inside the ellipse. 
a. State this mathematically as a constrained minimization problem. That is, 

set up the problem for solution using numerical optimization. 
b. Analytically determine the optimum dimensions of the rectangle and its 

corresponding area. 
c. Draw the ellipse and the rectangle on the same figure. 
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1-6 Given the following optimization problem; 
Minimize: 
Subject to: 

The current design is X1 = 1, X2 = 1. 
a. Does this design satisfy the Kuhn-Tucker necessary conditions for a con-

strained optimum? Explain. 
b. What are the values of the Lagrange multipliers at this design point? 

1-7 Given the following optimization problem: 
Minimize: 
Subject to: 

a. Plot the two-variable function space showing contours of F = 10, 12, and 
14 and the constraint boundaries  and . 

b. Identify the feasible region. 
c. Identify the optimum. 
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