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1. Abstract
This paper presents a new methodology for creating good approximations to Optimal Latin Hypercube designs without
using formal optimization.  Using this methodology, the approximations to Optimal Latin Hypercube designs are
obtained with minimal computational effort and in real time.  The methodology exploits patterns of point locations for
Optimal Latin Hypercube designs.  Small building blocks with one or several points in each are used to recreate these
patterns taking into account the dimensionality of the problem and the required number of design points.
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3. Introduction
The location of experimental data points is very important for generating accurate metamodels, while maintaining a
reasonable number of experimental data points.  Design of Experiments [1] provides a tool that aids in the process of
point selection.  One popular design of experiments technique is the Optimal Latin Hypercube design [2-4].  The
Optimal Latin Hypercube design is widely used for computer generated experiments.  This design is model independent
and has very good space filling properties.  Optimal Latin Hypercube design is also flexible: it gives the user the option
to select as many points as desired.  Unfortunately, generating an Optimal Latin Hypercube design results in a difficult
optimization problem that is traditionally solved by time consuming non-gradient based methods, such as Genetic
Algorithms [2].  Solution times reported in the literature often exceed several hours for large number of points and large
number of design variables [2-4].  Such a high computational cost limits the practical use of this important design of
experiments.
This paper presents a new methodology for creating good approximations to Optimal Latin Hypercube designs without
using formal optimization.  Using this methodology, the approximations to Optimal Latin Hypercube designs are
obtained with minimal computational effort and in real time.  The methodology exploits patterns of point locations for
Optimal Latin Hypercube designs.  Small building blocks with one or several points in each are used to recreate these
patterns taking into account the dimensionality of the problem and the required number of design points.
In its current form, the obtained Structured Latin Hypercube designs provided by this new methodology in two
dimensional space cannot be improved using non-gradient optimization methods.  In higher dimensional design spaces,
the Structured Latin Hypercube designs generated using the proposed methodology are still good but can be improved
using non-gradient optimization methods, which often adds significant computational cost.  Even though the designs
can be improved for higher dimensional problems, the proposed methodology provides a powerful and efficient tool for
obtaining good approximations to Optimal Latin Hypercube designs in real time.

4. Latin Hypercube Design and Enhanced Stochastic Evolutionary Algorithm
The Latin Hypercube design in N variables and in M points is constructed as follows.  Each of the N design variables is
divided into M equally spaced levels and only one point is allowed to occupy each level.  Often, Latin Hypercube
designs are constructed using a random process.  Such a process results in many possible designs, each satisfying the
Latin Hypercube condition of only one point per every level.  However, the random process does not prevent the



possibility of creating a design, where all the points are located along the diagonal of the design space, thus resulting in
poor statistical qualities of the experimental design.  To overcome this problem, Optimal Latin Hypercube was
introduced to improve the space filling property of the design.  In Optimal Latin Hypercube the points are pushed away
from each other as much as possible.  This last condition is quite an obstacle for real-time creation of the Optimal Latin
Hypercube designs.  This problem is often solved using evolutionary algorithms, such as Genetic Algorithms [2].
To introduce a valid new method for creating Optimal Latin Hypercube design, the new results should be compared to
existing methods.  We chose to compare our results to the ones obtained using Enhanced Stochastic Evolutionary
Algorithm (ESEA).  ESEA was introduced in [5] as an enhanced version of the Stochastic Evolutionary Algorithm,
developed by Saab and Rao [6].  We chose ESEA because this algorithm proved to be relatively fast in coming up with
the Optimal Latin Hypercube designs, unlike the Genetic Algorithm implementation.  Such efficiency is explained by
the use of the element-exchange algorithm and efficient evaluation of the optimality criterion.

It should be mentioned that ESEA uses the pφ criterion to come up with the optimal design:
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where

  p - is a positive integer (when using a large value of p, the pφ criterion is equivalent to the maximum distance

criterion [5]).  We used p=50 for our calculations.

id  - are the values of the distances between the points.

iJ  - is the number of pairs of points in the design separated by id
 s - is the number of distinct distance values.

The list of distances between the points ( sddd ,,, 21 � ) is composed of the distinct distances between individual

points, ijd :
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where
N - is the number of design variables (coordinates)

ikx  - is the k-th coordinate of the i-th point

5. Structured Latin Hypercube Design
This section describes an empirical approach to create a well structured design (rather than based on random number
generation) that is reasonably close to Optimal Latin Hypercube design without performing optimization.  The
importance of such an approach resides in the fact that it gives the capability to create a Latin Hypercube design that has
better space filling properties than the standard Latin Hypercube design, using minimum computational time (at most,
seconds).  The resulting design can be used either as an initial design for the Optimal Latin Hypercube generator
algorithm (such as Genetic Algorithm or ESEA) or as a good approximation for Optimal Latin Hypercube design.  In
the former case, one should take into account a compromise between obtaining best possible Optimal Latin Hypercube
design and the computational cost to generate such design.
The methodology that we propose is based on the concept that an Optimal N-dimensional Latin Hypercube design can
be constructed from an N-dimensional seed design.  Instead of a formal description of the approach, a practical example
will be used to explain the methodology of creating a Structured Latin Hypercube design.
Consider the case in which it is desired to construct an Optimal 16  2 Latin Hypercube design, i.e., 16 points in 2-
dimensions.
First, a small Latin Hypercube design will be constructed to be used as a seed in the process.  Figure 1 shows some
examples of 2-dimensional seed designs.  Figure 1(a) shows the seed used in this example.  It is important to note that
this seed can be as simple as just a 1  N design (where N is the dimension of the problem, i.e. the number of
design variables and 1 is the number of points used).



Figure 1.  Examples of seed designs for 2 design variables

Second, the design space is divided into blocks in such a way that each dimension is divided into the same number of
blocks.  The result is that each block can be filled using the seed design (defined previously).  It is clear that these
processes are inter-dependent.  The seed size, i.e., the number of points in the seed design, and the final design size will
determine the number of blocks in each dimension. In general, the following relations must be observed:

LatinHypercubeSize = NumberOfBlocks ×SeedSize (3)

NumberOfBlocks = (NumberOfDivisions)NumberOfVariables (4)

ocksNumberOfBl

cubeSizeLatinHyper
  SeedSize = (5)

Figure 2 shows how the 16×2 Latin Hypercube mesh will be divided into blocks for the seed design from Figure 1(a).
It is important to point out that the fact that each block has four rows and four columns of the Latin Hypercube mesh
does not mean that each block will have four points at the end of the process.  Instead, this is a way to ensure the
minimal distance between points in the final Structured Latin Hypercube design

Figure 2.  16×2 Latin Hypercube mesh divided into blocks.

The seed design must be properly placed into each block.  Figure 3 illustrates how this process works.  The first step is
to properly scale the “seed design” and then place it at the origin.  Next, a set of shifts must be performed.  The first one
is to shift the seed to consecutive blocks along one of the dimensions.  The second step is to shift the origin of the seed
inside the mesh of the block.  There is a coupling between these two processes.  If the block shift is performed on the
rows, the seed-origin shift must be performed on the columns, and vice-versa.  This process is repeated until one of the
dimensions is filled.  After that, the whole set of points placed in that dimension can be used to feedback the “shifting”
process that continues filling the next dimensions.
The biggest advantage of this approach is that there are very few calculations to perform.  All operations can be viewed
as translations of a N-points block in the N-dimensional hypercube.



Figure 3.  The process of creating the 16×2 Structured Latin Hypercube design

Although efficient for generating large designs, the previous algorithm fails to provide the flexibility for the number of
points that the user may want.  The approach described above is limited by the relationship

LatinHypercubeSize = NumberOfDivisions NumberOfVariables , (6)

which follows directly from the Eqs. (4) and (5) for the smallest seed size of 1.  It means that the described algorithm is
restricted to have the number of points to be equal to the integer power of the number of design variables.
To overcome this serious deficiency we decided to use the fact that the algorithm is capable of generating well
distributed points that fill the design space well.  To generate the Structured Latin Hypercube design with any number
of points, the first step is to generate the design that has at least the required number of points using the algorithm
described above.  If after generating the design we obtain the required number of points, the process is completed.  If
after applying the Structured Latin Hypercube algorithm the number of point is larger than required, a shrinking process
is used to reduce the number of points.  Points are removed one-by-one from the initial Structured Latin Hypercube
design using certain criterion until the desired number of points is met.  The simplest criterion that works well is to
discard the points that are the farthest from the center of the hypercube.  The reason that such criterion works is that this
criterion preserves the kernel of the initially generated design formed by well distributed points.

6. Numerical Results
The appeal of the proposed methodology for generating Structured Latin Hypercube design is that virtually no
computational time is required to create good Latin Hypercube designs.  This empirical approach can be used either to
quickly obtain a Latin Hypercube design with good space-filling properties or to generate a good starting point for a
formal Optimal Latin Hypercube optimization procedure (like ESEA).
Table 1 shows the performance comparison of the ESEA procedure of generating Optimal Latin Hypercube designs
starting from three different initial designs, which are as follows:



(a) “Worst case” – the worst design, where the points are located along the diagonal of the design space,
(b) “Structured case”  – Structured Latin Hypercube design,
(c) “Random case”  – a random design.
For all cases, the stopping criterion used was a maximum number of 100 iterations.

Table 1 also allows one to directly compare the values of the pφ criterion for the Structured Latin Hypercube design

with the Optimal Latin Hypercube design obtained with ESEA.

Table 1.  Optimal Latin Hypercube designs generated using ESEA from three different initial designs

Note that for the cases of two design variables (225×2 and 1024×2) the optimization procedure was not able to

improve the pφ criterion of the Structured Latin Hypercube design.  This indicates that for the 2D cases, the proposed

empirical methodology of creating the Structured Latin Hypercube design produced the optimum results at almost no
computation cost.  For the higher dimensional cases, the formal optimization was able to make relatively small

improvements to the pφ criterion of the Structured Latin Hypercube design.  This is an indication that the Structured

Latin Hypercube design generated using the proposed methodology provides a reasonable approximation to the Optimal
Hypercube designs in high dimensions.

7. Conclusions
The paper introduces an empirical methodology for creating Structured Latin Hypercube designs that are good
approximations of Optimal Latin Hypercube designs.  The approach is based on the idea that a simple “seed design”
with a few points can be used to build a complete Latin Hypercube design.  The main advantage of the proposed
methodology is that it requires virtually no computational time.  Test cases show that in two dimensional case (two
design variables) the Structured Latin Hypercube designs obtained using the proposed methodology can not be
improved using a formal ESEA optimization procedure.  For higher dimensions ESEA was able to improve the

pφ criterion of the Structured Latin Hypercube design.  However, in all the test cases the Structured Latin Hypercube

design produced better pφ criterion than the random Latin Hypercube design.  As the time for generating the Structured

Latin Hypercube design is very small we recommended to use this design as a good approximation of the Optimal Latin
Hypercube design.
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