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Abstract 
This paper presents a new capability for performing a special type of shape optimization.  Traditional shape optimization 
is often performed by using perturbation vectors that are linked with grid coordinates and design variables which an 
optimizer can change.  In this work, these shape perturbation vectors are split so that each grid, and/or a set of nearby 
grids, and/or a set of grids linked by a manufacturing constraint, has its own design variable.  This split produces great 
variability in the answers.  In this work, possible distortions that could happen during an optimization run are prevented 
with automatically generated distortion constraints and/or by mesh smoothing.  To distinguish this capability from 
standard shape optimization, we named this capability freeform optimization. This capability could be seen as a 
generalization of topography optimization since it can reproduce most of topography results, but it is different than 
topography optimization since it can be used to design any type of structure including solids and trusses whereas 
topography is mostly used for shell structures. Several examples which show the application of freeform are presented.  
One example will show the use of freeform optimization to find optimal rib locations in a solid structure.  Other examples 
will demonstrate the use of freeform optimization to find optimal bead locations in shell structures.  
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1. Introduction 
Traditional shape optimization has been successfully utilized to optimize a variety of structures for many years. However, 
in today’s competitive environment, where new designs are expected to perform better than  previous ones and at the same 
time to be more economical, traditional shape optimization has started to be insufficient. This situation was similar for 
sizing optimization some years ago. Our response then, as software developers, was to improve on sizing optimization by 
developing topometry optimization [1]. Topometry optimization is essentially an automatically generated 
element-by-element sizing optimization. So when faced with the challenge to improve on shape optimization, we thought 
why not create something like a grid-coordinate by grid-coordinate optimization?  Researching the literature we can find 
some papers on which each grid-coordinate is designed. The problem with this approach is that it can easily distort finite 
element meshes. In addition, this approach does not give enough controls to be useful. Because of that, we have been 
using topography optimization for shell structures and occasionally for solid structures. Topography optimization works 
by automatically creating perturbation vectors which in general are normal to the designable surface areas [2]. In Genesis, 
for shells, topography works directly [3]. For solids it needs to use an external shell skin that is used to design the surface 
grids of the structure and mesh smoothing to move the interior nodes. The use of topography optimization has given good 
results but has several limitations. The good results can be attributed to the fact that it uses perturbation vectors which are 
well defined.  The most noticeable limitations are that: a) topography optimization can easily distort the mesh, b) 
topography only works with certain types of elements and c) topography can not produce beads with variable heights 
(user controlled maximum heights).  Recently, we have developed a method to overcome the first limitation. The method 
uses internally created distortion constraints. Distortion constraints will be discussed later in this paper as they are new 
and very important to freeform optimization. Traditional shape optimization that uses perturbation vectors does not have 
the last two limitations described. In other words, it is not limited to any type of elements and perturbation vectors can 
take almost any shape we want. It should be mentioned here that there are several ways to create perturbation vectors and 
they can be created either internally in the software (for example using the Domain elements [4]) or using a design 
pre-processor like Design Studio [5]. A question arises: Can we take advantage of the best of topography (each grid has its 
own variable) and the best of shape optimization (perturbation vectors are known, have controlled shape and work with all 
elements)?  The implantation of freeform is an attempt to answer that question. The idea behind freeform is the following: 
The program takes an existing perturbation vector and then breaks it into individual perturbations so that each grid has its 
own perturbation vector and its corresponding design variable.  Because of this, we can define freeform optimization 
capability as a grid-by-grid shape optimization capability. 



 
 
 
2. Approximation Concepts 
Before going into the details on how freeform has been implemented, an explanation of how the Genesis program solves 
an optimization problem is presented next. In Genesis, a structural optimization problem is solved using the 
approximation concepts approach. In this approach, an approximate analysis model is created and optimized at each 
design cycle. The design solution of the approximate optimization is then used to update the finite element model, and a 
full system analysis is performed to create the next approximate analysis model.  The sequence of design cycles continues 
until the approximate optimum design converges to the actual optimum design.  In the mid-seventies Schmit et al. 
introduced approximation concepts for traditional structural optimization [5-6]. These concepts, in the eighties and early 
nineties, were refined to improve the quality of approximations [7-9]. The approximate problem is solved using either the 
BIGDOT [11] or DOT [10] optimizers.  The purpose of using the approximation concepts approach is to reduce the 
number of design cycles to reduce time. With these approximations a good engineering answer can be typically found in 
10 design cycles.  
 
3 Shape Optimization 
3.1 The Perturbation Vector 
Shape optimization is used to find the optimal location of grids in a structure. In the Genesis software, shape optimization 
uses perturbation vectors. The perturbation vectors dictate how much and in which direction the coordinates of the grids 
can change when its corresponding design variable changes in one unit. The effect of one perturbation vector is shown in 
Fig.1 below. 

 
Figure 1. Perturbation Vector 

 
The following figure shows how a perturbation vector affects the location of the grids. A value of 0.0 on the design 
variable causes no movement. A value of 1.0 causes the structure to move the same as the perturbation vector. If the 
design variables take a value larger than 1.0, then the grid movements are larger than the perturbation. In Fig. 2, below, it 
is shown how a shape would look if the design variable associated to the perturbation vectors took a value of 5.0. 

                                
Figure 2. Shape Changes  

3.2 Grid Location Update 
When there are multiple perturbation vectors, the grid locations are updated by adding to the initial coordinate a 
linear combination of all perturbation vectors and its corresponding design variables.  The equations used in shape 
optimization to internally calculate the new locations of the grids are: 
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In equations (1), Xi, Yi and Zi are the updated coordinates of the grid i. Xio, Yio and Zio are the initial coordinates of the grid 
i. XPij, YPij and ZPij are the components of the jth perturbation vector corresponding to grid i.  Finally, DVj is the value of 
design variable j.  These equations are also used by topography and freeform optimization. 



 
 
4. Freeform Optimization 
We can define freeform optimization as a grid-by-grid shape optimization capability in which a given perturbation vector 
is split to increase the variability of the answers. Besides the standard constraints, three special constraints can be used to 
improve the quality of answers: grid fraction constraints, distortion constraints and manufacturing constraints. 
 
4.1 Split Perturbations 
The process to split perturbations is quite simple. For each grid it designs, a new perturbation is created using the 
components associated with that grid while the other components are ignored.  
 

 
 

Figure 3.  Perturbation Split 
4.1.1 Split Perturbation Example 
The following example shows a perturbation vector that is split into multiple ones. A flat plate is used.  Fig. 4(a) shows the 
initial perturbation vector that is used to simultaneously design 25 grids. Fig. 4(b-d) shows 3 of the 25 perturbation vectors 
generated.  In these figures, the color bars represent the magnitude of the perturbations. Red indicates that the grid has 
moved to its maximum location and blue indicates that the grids have not moved.  

 

 
        (a) Initial Pert. Vector                    (b) 1st Pert. Vector                (c) 2nd Pert. Vector                             (d) 25th Pert. Vector 
 

Figure 4.  Split Perturbation 
4.2 Grid fraction Constraints 
Grid fraction constraints are used to limit the number of grids that can move in the designable space. These constraints 
typically create more economical and clean designs. There are several optional expressions to implement this type of 
constraint. Here we will only show one of them:  
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where, gfr is the grid fraction constraint, xi is the ith design variable, n is the number of design variables in the freeform 
region and UBgfr is the upper bound value of the constraint.  

Typical values for the grid fraction upper bounds are 0.2, 0.35 and 0.5. These values are for limiting the number of grids 
that move to 20%, 35% and 50%, respectively. The third example, in section 8 of this paper, shows the effect of using 
different grid fraction constraints.  

4.3 Distortion Constraints 
The main drawback of shape optimization and any other special case of it such as topography or freeform optimization is 
that the elements of the mesh can get distorted. Distorted elements reduce the accuracy of the finite element results and 
produce answers that are typically stiffer than the correct answers. Moreover, distorted elements might yield to negative 
or zero jacobians of the stiffness matrices producing either unsolvable system of equations or incorrect answers. For these 

…



 
 
reasons, it is important to prevent this problem. The traditional way to solve this problem is by either using mesh 
smoothing where the grids of the mesh are internally moved to reduce distortion or by simply reducing the scope of the 
design variables. The first method is very useful, while the second method is inconvenient and limiting because it reduces 
the chance to improve the design. In the Genesis program, we added the ability to automatically create a distortion 
constraint so the problem is attacked directly.  Each type of measurable distortion parameters, such as the jacobian of the 
stiffness matrix, aspect ratio, interior angle and warping, are considered.  The type of equation used is the following: 
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where, gdl  is a grid distortion constraint associated to Distortionl, xi is the ith design variable, n is the number of design 
variables in the freeform region, UBgdl is the upper bound value of the constraint and LBgdl is the lower bound value 
of the constraint. 

The values for the distortion bounds are element dependent and distortion type dependent. These constraints are generated 
automatically. These constraints are also used with shape and topography optimization.  

4.4 Manufacturing Constraints 
If there are manufacturing constraints, such as symmetry constraints, the split process is changed to ensure that valid 
perturbations are created. Examples of manufacturing constraints are:  planar symmetries, cycle symmetries and 
extrusion. Examples in sections 6 to 9 show the use of manufacturing constraints.  
 
4.5 The Freeform Optimization Problem 
The freeform optimization problem with distortion and grid fraction constraints can be stated as:  
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where F is the objective function, gj are the standard constraints, gfrk are the grid fraction constraints, gdl are the distortion 
constrains, xi is the ith design variable and xli and xui are the lower and upper side constraints. 

This optimization problem is solved using approximation concepts described in section 2. 

5. Advantages and Disadvantages of Freeform Optimization with respect to Other Optimization Types 
5.1 Freeform vs. Shape Optimization 
The main advantage of freeform over shape optimization is that it can produce more variability than shape optimization. 
The main disadvantage of freeform over shape optimization is that it has more chances than shape optimization to distort 
the finite element meshes.  
 
5.2 Freeform vs. Topography Optimization 
The main advantage of freeform over topography optimization is that it works with any type of elements. Topography is 
mostly used with shells and occasionally with solids. Another advantage of freeform over topography is that freeform can 
generate beads with variable heights. See section 9 of this paper for an example which illustrates this latter mentioned 
advantage. 
 
5.3 Freeform vs. Topology Optimization 
The main advantage of freeform over topology optimization is that it can add extra material outside the borders. Topology 
optimization can only take material away. The main advantage of topology over freeform is that topology can produce 
interior cavities and that it can not distort meshes.  
 



 
 
6. Example. Rib Pattern Optimization of a Solid Structure 
6.1 Description of the Problem 
This example demonstrates the use of freeform optimization to find the optimal location of rib patterns in a solid structure. 
The overall dimensions of the structure are 40 mm x 18 mm x 1.5 mm. The structure is assembled with 8640 hexahedral 
elements and 11988 grids. The Young’s modulus is 207,000 MPa and the Poisson’s ratio is 0.3. There are three torsion 
load cases. In the first load case, one end is fixed on its two corners while the other end is subject to a pair of loads that 
produce a twist. In the second load case, the loads and boundary conditions are reversed from the first load case. In the 
third load case, the four corners of the structure are constrained while the center of the structure is loaded in torsion. The 
three load cases can be seen in Fig. 5. 

 
Figure 5. Load cases 

 
A perturbation vector that can move the top and bottom surface grids is applied as shown in Fig. 6. The colors in this 
figure show the magnitude of the perturbation. The red color represents the maximum movement which is 1.2 mm, the 
blue color represents no movement. In Fig. 6 grids in red are designable while the grids in blue are not designable. Fig. 6 
can show the components of the perturbation vector in the top. The components in the bottom are similar to the ones in the 
top but instead of pointing upward, they point downward making the perturbation vector symmetric with respect to the 
midsize x-y plane that passes through the center of the structure.  

 
                                                                             Figure 6. Perturbation Vector  
 
The objective function of the problem is to minimize the sum of the normalized strain energy of the three torsion load 
cases. A grid fraction constraint of 0.45 is used to reduce the number of grids that move. In addition, manufacturing 
constraints are used to obtain triple symmetry about the center of the structure.  
 
6.2 Results 
Fig. 7 shows four views of the freeform optimization results. The final design is triple symmetric, as imposed, and the 
45% grid fraction seems to be satisfied. The output file of the program, not shown here, confirms that.  

 
                                                                             Figure 7. Freeform Results  



 
 
 
Using the provided perturbation vector, shown in Fig. 6, freeform optimization automatically generated 608 perturbation 
vectors and 608 corresponding design variables. These 608 perturbation vectors controlled the design of 4650 surface 
grids.  A plot of the objective function versus the design cycle number can be seen in Fig. 8(a). The objective function was 
reduced from 3.0 to 0.64. In other words, the final structure is nearly 5 times stiffer than the original one. Fig. 8(b) shows 
that the normalized mass changed approximately 60%. In this case, the optimization process took 19 design cycles to 
converge. At the end of the optimization there were no violated constraints. 

                               
                                                      (a)  Objective function                                            (b)  Normalized Mass  
 

Figure 8. Optimization History Results 
6.3 Validation of the Problem 
To validate the freeform optimization results of this problem, a topology optimization run is performed on an equivalent 
problem. Since topology optimization can not add material, two layers of elements are added to the top and bottom of the 
structure. The topology model is assembled with 18,368 hexahedral elements and 22,228 grids. The topology model uses 
the same objective function and manufacturing constraints. In addition, a mass fraction constraint of 0.45 is used. The 
topology designable area was limited to the added material area.  
 

  
 

Figure 9. Freeform Optimization vs. Topology Optimization Designs 
 
6.4 Comparison of Freeform and Topology Optimization Results 
Freeform and topology optimization initial and final designs are shown in Fig. 9.  From this figure, it can be seen that both 
freeform and topology optimization results suggest similar rib patterns.  This topology optimization result validates the 
freeform results.  
 



 
 
7. Example. Bead Pattern Optimization Using Different Types of Manufacturing Constraints 
7.1 Description of the Problem 
This example demonstrates the use of freeform optimization for finding the optimal location of bead patterns using 
different types of manufacturing constraints. The example uses a plate structure. The overall dimensions of the plate are 
40 mm by 18 mm. The thickness of the plate is 1 mm. The structure is assembled with 720 quadrilateral elements and 779 
grids. The Young’s modulus is 207,000 MPa and the Poisson’s ratio is 0.3. The plate has two corners constrained in one 
end and it is subjected to torsion loads in the other end, as shown in Fig. 10(a), below. A simple perturbation vector is 
created using a uniform pattern as shown in Fig. 10(b). The objective function of the problem is to minimize the strain 
energy to maximize the stiffness of the structure. There are three alternative designs and they are described below. 

                                                         
                                 (a)   Loading Condition                                               (b) Perturbation Vector  
 

Figure 10.  Inputs to the problem 
 
 7.2 Alternative Design 1.  Symmetrical Design 
In this case a manufacturing constraint is used to enforce symmetry with respect to the x-z plane that passes through the 
center of the plate. A bead fraction constraint of 0.33 is used to limit the amount that the grids can move. In addition, the 
grids are restricted to move only upward.  
 

                                                                   
 
                                 (a) Single Symmetry Design                           (b) Objective and Max Constraint Violation History Plots  
   

Figure 11.  Freeform Results for Single Symmetry Design 
 
For this alternative, freeform optimization automatically generated 351 perturbation vectors and 351 corresponding 
design variables. Fig. 11(a) above, shows the final design. Fig. 11(b) shows that it took 21 design cycles to converge and 
that there are no constraint violations in the last design cycle. The strain energy decreased approximately 35 percent. 
 
7.3 Alternative Design 2. Double Symmetry Design 
In this case, two manufacturing constraints are used to enforce double symmetry with respect to the center of the plate. A 
bead fraction constraint of 0.33 is used to limit the amount that the grids can move. In addition, the grids are restricted to 
move only upward.   
 

                                                                 
 

                               (a) Double Symmetry Design                               (b) Objective and Max Constraint Violation History Plots  
   

Figure 12.  Freeform Results for Double Symmetry Design 
  



 
 
For this alternative, freeform optimization automatically generated 180 perturbation vectors and 180 corresponding 
design variables. Fig. 12(a), above, shows the final design. Fig. 12(b) shows that it took 21 design cycles to converge and 
that there are no constraint violations in any design cycle. The strain energy decreased approximately 35 percent. 
 
7.4 Alternative Design 3. Uniform Design 
In this case, two manufacturing constraints are used. One manufacturing constraint is used to enforce symmetry with 
respect to the x-z plane and another to generate a uniform profile throughout the x direction. A bead fraction constraint, 
equal to 0.50, is used to limit the amount that the grids can move. Here the equality constraint is used to induce the 
optimizer to make the answers more sharp.  
 

                                                                  
                (a) Simple Symmetry and Uniform Profile Design           (b) Objective and Max Constraint Violation History Plots   
 

Figure 13.  Freeform Results for Simple Symmetry and Uniform Profile Design 
 
For this alternative, freeform optimization automatically generated 8 perturbation vectors and 8 corresponding design 
variables.  Fig. 13(a), above, shows the final design. Fig. 13(b) shows that it took 21 design cycles to converge and that 
there are no constraint violations in the last design cycle. The strain energy decreased approximately 11 percent. 
 
7.5 Comparing the Alternative Designs 
Alternative designs 1 and 2 are similar in a way that both produced beads which are oriented in 45 degrees with respect to 
the main direction of the plate. These two results are reasonable as when there are torsion loads experience has shown, that 
they can be carried to the supports more effective with members distributed in 45 degrees.   In design 3, where the beads 
are forced to be along the main direction (x), the results are consistent with the manufacturing requirement. The first two 
alternative designs are more efficient to carry torsion loads than the last design, they can improve the objective function 
more (35% versus 11% improvement). 
 
8. Example. Bead Pattern Optimization of Curve Structure Using Different Types of Grid Fraction Constraints 
8.1 Description of the Problem 
This example demonstrates the use of freeform with different bead fraction constraints. The example uses a curve shell 
structure assembled with 3200 quadrilateral elements and 3381 grids. The overall projected-dimensions of the structure 
are 160 mm by 50 mm by 20 mm. The curvature of the structure is obtained by making the height of the structure a 
quadratic function of x, where x is measured along its length. The thickness of the plate is 1 mm. The Young’s modulus is 
207,000 MPa and the Poisson’s ratio is 0.3 The shell has two corners constrained in one of the short sides and it is 
subjected to torsion loads applied to the opposite short side. The objective function of the problem is to minimize the 
strain energy. Three alternative grid fraction constraints are imposed: 0.15, 0.20 and 0.25. These grid fraction constraints 
are to allow the grids to move up to 15%, 20% and 25% respectively.  
 

               
                   (a) Grid fraction=15%                                 (b) Grid fraction=20%                                   (c) Grid fraction=25% 
 

Figure 14.  Freeform Results Using Different Grid Fraction Constraint Values                               
 
8.2 Comparing the Alternative Designs 
Figures 14 (a-c) show that when the grid fraction constraints are increased, the number of beads increases. These results 
are expected as the role of bead fraction is precisely to do that.   



 
 
9. Example. Bead Pattern Optimization Using Non-Uniform Maximum Height 
9.1 Description of the Problem 
This example demonstrates the use of freeform to obtain bead patterns that can have non-uniform heights. The objective 
function of the problem is minimizing the strain energy. There is a grid fraction constraint of 0.3. There are manufacturing 
constraints: the first one is to enforce symmetry with respect to the plane x-z that passes through the center of the plate and 
which divides it in two throughout the length and the second is to obtain longitudinal beads.  To obtain bead patterns that 
are not uniform in height, the only thing to do is generate a perturbation vector that represents an upper bound for the 
design. The initial design is shown in Fig. 15(a). The provided non-uniform perturbation vector is shown in Fig. 15(b). 

 
          (a) Initial Design                             (b)  Non-Uniform Perturbation Vector                         (c) Final Design 
 

Figure 15. Optimal Location of Bead Patterns Using Freeform Optimization                             
9.2 Results  
The final design shown in Fig. 15(c) has mirror symmetry, longitudinal symmetry and bead patterns with variable height, 
as required. It is interesting to mention here that this result can not be obtained with topography optimization. 
 
10. Summary and Conclusions 
This paper has described freeform optimization which is a new capability to optimize structures. This new capability can 
be defined as a grid-by-grid shape optimization capability.  Three special constraints that improve the results were 
discussed: distortion constraints, grid fraction constraints, and manufacturing constraints. This capability can be used with 
any type of structure but is particularly useful to find ribs in solid structures and uniform or non-uniform bead patterns in 
shell structures.  
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