
VisualDOC: New Capabilities for Concurrent and

Integrated Simulation and Design

Santosh Tiwari�, Hong Dongy, Brian C. Watsonz, and Juan P. Leivax

Vanderplaats Research & Development, Inc., Novi, MI, 48375, USA

In this paper, the redesigned VisualDOC software; a tool for design process de�nition,
integration, execution, and automation is presented. This new version also has signi�cant
emphasis on design modules such as Optimization, Design of Experiments, Response Sur-
faces, and so on. The new VisualDOC is a system that allows the designer to graphically
create a connected work
ow of components resembling a traditional
owchart and de�ne
each component in the
owchart appropriately. This improved version presents a new ap-
proach to de�ning
ow of execution, information transfer and associativity, and concurrent
monitoring (visualization) of the execution process. It is designed to be a
exible and
powerful tool that can be used to model virtually any design process. The new VisualDOC
combines modeling, simulation, and visualization/presentation aspects of a design process
into a single and coherent software tool. Here, a conceptual description and salient features
of the new design of VisualDOC are presented.

I. Introduction

In a competitive and ever-demanding business and development environment, designers and engineers need
access to increasingly more sophisticated tools to assist them in the design process. As the complexity of a

design process and the knowledge (meaningful information) associated with it grows, need for more e�cient
and capable tools to manage and process that information also grows. More importantly, as the designers and
engineers gain more experience and expertise, they move on to higher level tasks that require further critical
thinking and analysis. The lower level tasks are eventually taken over by expert systems such as software
tools which can execute the tasks and processes well understood, thereby freeing the engineer to focus on
the next challenges.1 This transition of tasks from a human expert to a software system continuously occurs
as a design process becomes well understood and it becomes feasible to implement it in a software system.
The new version of VisualDOC described in this paper is conceived as a coherent and completely integrated
set of such software and algorithmic tools which can be used to assist the designers and engineers.

The computational tools that are often used during the execution of a design task2,3 come from domains
such as optimization, design of experiments, response surfaces, reliability and robustness, and CAE analysis
modules for various types of physical models. Apart from these algorithmic tools, modules to integrate
these systems together, facilitate communication between them, and store/process/visualize the associated
information are also needed. The new VisualDOC is a software system that contains these tools as com-
ponents and has interfaces to allow it to talk to external software that could potentially be used during
a simulation/design process. In this new version, each of these modules is treated as a component and a
design task is a connected work
ow of such components. In this paper, the
owcharting, data de�nition,
data transfer, simulation parameterization, and simulation monitoring aspects of the new VisualDOC sys-
tem are presented. More speci�cally, this paper explains how the improved VisualDOC makes it easy to
integrate multiple systems and sub-systems together, de�ne the
ow of execution and
ow of associated data
independently as well as in concert, and perform concurrent simulation, analysis, and visualization. It allows

�R&D Engineer, Vanderplaats Research & Development, Inc., 41700 Gardenbrook, Novi, MI 48375, Member AIAA
yR&D Engineer, Vanderplaats Research & Development, Inc., 41700 Gardenbrook, Novi, MI 48375
zDirector of Technology Development, Vanderplaats Research & Development, Inc., 41700 Gardenbrook, Novi, MI 48375
xPresident and COO, Vanderplaats Research & Development, Inc., 41700 Gardenbrook, Novi, MI 48375, Senior Member

AIAA

1 of 9

American Institute of Aeronautics and Astronautics

13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference
13 - 15 September 2010, Fort Worth, Texas

AIAA 2010-9177

Copyright © 2010 by Vanderplaats Research & Development, Inc. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

the designer to navigate the design process (step-by-step if desired), modify certain aspects of the work
ow
as the simulation proceeds, and perform concurrent decision making. It is interesting to note that this new
version makes it easy to execute various MDO methodologies4 such as CSSO, BLISS, MDF, IDF, etc. It also
makes it easy to execute multi-level simulation processes such as ATC5 and EMDO.6 Also highlighted in this
paper are a few design elements of VisualDOC which enforce and encourage established design practices. In
the sections that follow, a conceptual sketch of design process de�nition, execution, and monitoring using
the VisualDOC software is presented.

This paper does not intend to provide a comprehensive list of features and capabilities of the software nor
it demonstrates its application to a speci�c problem. Rather this paper primarily focuses on its conceptual
design and related framework. This paper is organized as follows. In section 2, the VisualDOC Work
ow
is described. Section 3 contains a description of the Component Editor of the new software. The data
communication (information transfer) using the Data Linker is described in section 4. Section 4 also includes
a description of process parameterization and automation capabilities of this new version. In section 5, the
concurrent process monitoring capabilities are discussed. Finally, section 6 concludes this paper.

II. VisualDOC Work
ow

Figure 1. The Main VisualDOC Window

When launched, the main window of VisualDOC appears with the Work
ow Editor (Fig. 1) as the
selected tab. The �rst step in the design process de�nition using this new version is the creation of the
work
ow. The designer (user) drags the desired components from the toolbars and drops them on the
canvas. The
owchart is then completed by connecting di�erent components. The connection between
di�erent components represents the
ow of execution. The resultant
owchart is referred to as the VisualDOC
model. The visual appearance of this model is designed to resemble a typical
owchart so that it is intuitive
to create and easy to manipulate. The new version of the software allows for creation of sub-
ows (up to
any level) and provides components to virtually program any kind of logic including conditional statement
blocks, loops, and parallel sub-
ows as part of the
owchart. A snapshot of a typical VisualDOC
owchart

2 of 9

American Institute of Aeronautics and Astronautics

is shown in Fig. 2. There are two distinct advantages of this visual representation.

Figure 2. A VisualDOC Flowchart

1. The
owchart is designed to be as similar as possible to what the designer (user) would typically draw
if the entire process was conceptualized on a piece of paper. It thus makes it natural and easier for the
designer to communicate his/her knowledge of the design process to the software.

2. It assists the user to correctly envision the
ow of execution. It does not allow creation of invalid
work
ows. Any process that is de�ned by the user is checked for the semantic validity of connections.
It also enforces the user to correctly de�ne various sub-systems (if multiple sub-
ows are used) and
their relation.

As shown in the
owchart in Fig. 2, the user can model virtually any kind of design process. Each
component (block) in the
owchart performs a speci�c function. Any component that has a
ow-logic of
its own (e.g. loops, optimization, parallel container, etc.) contains a sub-
ow inside. In this new version,
external components (that are not part of VisualDOC) can also contain sub-
ows if desired. The user can
drag-and-drop, move around, and cut-copy-paste blocks (components) at will to modify the
owchart. The

owchart de�nes the
ow of execution. The execution always begins at the Start block (there is always
a single Start block in the
owchart which cannot have any incoming connection) and ends at one of the
multiple Stop blocks. The execution is assumed to be over when a Stop block is encountered. If there is
conditional or parallel branching, then a branch of execution is assumed to be over when it encounters a
Stop block. The
ow of execution is always sequential unless it is inside a parallel container; in such a case,
all the sub-
ows execute simultaneously. Every component in the
owchart can have any number of inputs,
but a single output except an If block which has two outputs (only one of which will actually be executed
depending on the condition). The following are some of the highlights of the VisualDOC work
ow:

� The components (blocks) themselves do not contain the logic of the
ow. They merely perform a task.
The only exception to this rule is components that can contain a sub-
ow; in such a case, they perform
their task and then transfer the control to the contained sub-
ow for execution. When the sub-
ow is
done executing, the control is transferred back to the containing model. Here, the
ow of execution is
de�ned by the connections that the user creates (primarily via drag-and-drop). The user can modify
the
ow of execution by rearranging the connections and relocating the components.

� The new version fully supports and facilitates reusability and modularity. If identical functionality is
required at di�erent places in the sub-
ow, only one component needs to be created and con�gured. It

3 of 9

American Institute of Aeronautics and Astronautics

can then be copy-pasted/referenced at other places. Also, if a slight change in functionality is required,
then the user can copy-paste the component and then edit the copy as desired.

� The redesigned software also supports full undo/redo capabilities throughout. Every operation can be
undone/redone. The number of undo/redo steps is user con�gurable. It also fully supports time-stamps
where the user can save a snapshot of the model (referred to as a task), and then continue editing the
model. At any time, the user can switch back and forth between di�erent tasks as desired.

� The VisualDOC work
ow can also be interpreted as a directed cyclic graph with a single root node.
It is possible to create cyclic work
ows and a cycle may span multiple levels (sub-
ows). Furthermore,
if conditional blocks (If modules) are present in a cycle, a simulation may never complete. It auto-
matically checks for all possible cycles in a work
ow during the model validation phase and highlights
all the cycles (if conditional blocks are present, it checks all possible branches recursively to make sure
that in�nite loops do not occur). It also checks for disconnected models and incomplete connections.
It does not allow the user to create any invalid connection at any stage of the modeling process.

� Since a VisualDOC work
ow is a collection of sub-
ows, the user can execute only part of a sub-
ow
if desired (helpful during the model validation and testing phase). The user can also execute a single
block in the work
ow. Each component (block) has a pre-condition and a post-condition. Before
a block can be executed, its pre-condition must be satis�ed, and if it has successfully executed, the
post-condition will be satis�ed. Thus, to execute a sub-
ow, it is necessary to satisfy the pre-condition
for all possible entry points of that sub-
ow. An example of a pre-condition is: the inputs to the entry
point must be de�ned and have a value before that component is executed.

� A powerful model validation and testing feature of the new software is the debugging interface which is
similar to a debugger built into IDEs for programming languages. The user can stop, pause, continue,
and advance a single step of the design process manually by mouse clicks to step-through the model
execution. The user can also add break points in the model which when encountered during the execu-
tion prompts the user for further action. The model validation and stepping through is accompanied
by visual feedback that shows the current block being executed and state of the VisualDOC model.
The debugging process is completely mouse-driven and requires minimal keyboard input. The break
points can be added/removed when the debugging is in progress.

The next step after creating the work
ow is con�guring each component (block) which is discussed in
the next section. The user can always switch back and forth between
owcharting, component editing, and
linking interfaces.

III. VisualDOC Component Editor

The editing of a component is a two-step process (which can be performed in any order) in the redesigned
software. The �rst step involves de�ning simulation data (inputs and outputs) for a component. A component
may also have additional data which may not be input/output (e.g. local/dependent variables). The user
interface for de�ning the simulation data is the same for every component. Any data/parameter whose value
must be known before a component is executed is an input to that component. Any data/parameter whose
value is modi�ed as a result of execution of that component is an output from that component. No data is
allowed to be the input and output at the same time. If a component needs to read/write values to the same
data, data related parameters can be created (discussed later). The following three data types are supported
by the new version of the software:

1. Scalar : A scalar data is a �eld with a single value. The value type may be real, integer, boolean, or
string. This is the simplest supported data type.

2. Vector : A vector data type is an N -dimensional matrix (N � 1). The size of each dimension is
con�gurable. All the elements in the vector themselves are scalars with the same value type. The user
can independently edit the value of each element or can use the vector to simultaneously e�ect the
change on all the elements.

4 of 9

American Institute of Aeronautics and Astronautics

3. Structure: A structure is a collection of data. Thus, a structured data type can contain other structured
data types. The primary purpose of this data type is to group similar data together. Each data �eld in
a structure is independently con�gurable. The creation of structured data type is automatically done
by VisualDOC, and hence this option is not explicitly made available to the user.

A data may also have additional attributes such as independent, dependent, constant, or discrete. A
snapshot of the data editor is shown in Fig. 3. The data shown in Fig. 3 corresponds to a single component
(in this case, the optimization component).

Figure 3. The VisualDOC Data Editor

From the Fig. 3, it is obvious that the simulation data has additional attributes (e.g. lower bound, initial
value, upper bound, etc.) The additional attributes are component speci�c and are shown as columns in the
data editor. A novel aspect of this new version is that additional attributes (properties) can be assigned to a
data after it is created. Every data has some common attributes such as name, value, input/output, etc. The
number and types of attributes that can be associated to a data generally increase as a component becomes
more specialized. For example, a generic data may only have attributes such as name, value, input/output,
etc., but the same data when used in an optimization component may have additional attributes such as
whether it is a variable/objective/constraint and its lower/upper bounds if any. Again, that same data
when used in an analysis component may only be identi�ed by inputs and outputs (responses). Having a

exible attribute system allows downstream developers to assign additional meaning to a data as and when
needed. It is a facility primarily intended for the downstream developers and API users of VisualDOC who
wish to perform customization and/or add extra functionality. Furthermore, the new data editor allows for
automatic creation and con�guration of additional attributes based on the value of other attributes (e.g.
in an optimization component, if a data is set as a variable, it automatically becomes an output from that
component and lower/upper bound attributes are added). The second step in con�guring the component
is the component speci�c property editor. In this editor, the component speci�c details are de�ned. The
property editor for the optimization component is shown in Fig. 4.

A. Parameters

Another novel concept introduced with the new VisualDOC is the notion of parameters. Parameters are
data associated with the components which are not explicitly de�ned (and shown) in the data editor and
are not treated as inputs or outputs. Their meaning (interpretation) and attributes are context dependent.
The user does not explicitly create or edit any parameters, rather they are provided by the component as

5 of 9

American Institute of Aeronautics and Astronautics

Figure 4. The Optimization Component Property Editor

and when needed. The parameters can be used to fully automate any simulation inside VisualDOC. The
primary purpose of the parameters is to transfer information (communicate values) that is not contained in
the user-de�ned data. As such, the parameters are only visible in the linking interface (discussed in the next
section). There are three types of parameters available in this improved version of the software.

1. Data related parameters: This type of parameter is associated with the data that the user creates.
For example in an optimization component, corresponding to every data (say variable x), there exist
parameters such as xinitial (initial value - starting point for optimization), xbest (best value found so
far), xlower (lower bound), xupper (upper bound), etc. It is possible (and often desired) that the user
may want to read/write these values from other components. It should also be noted that each of
these attributes (parameters) are shown as a column in the data editor. Thus, in this new version of
the software, the user can create a parameter for any cell (if the data and attribute corresponding to
that cell allow it) in the data table, and can use the created parameter for linking. Similar to data,
the parameters can also be scalar, vector, or structure. The parameters and data can read from and
write to each other. By default, all data related parameters are disabled, and can be enabled by right
clicking on the cell and choosing the \Enable parameter" option.

2. Simulation parameters: This type of parameter is pre-con�gured and created by the component. They
are not associated with the data but are produced as a result of the component execution. For example,
in the DOE (design of experiments) component, the coe�cients of the approximate model are output
as a result. The DOE component automatically creates parameters associated with the coe�cients and
makes them available for linking. Generally, a large number of simulation parameters are automatically
created by each design component. By default, the simulation parameters are hidden, and they need
to be made visible in the linking interface.

3. Tuning parameters: This type of parameter is associated with the �elds that are typically shown in
the component speci�c property editor. For example, for the optimization component (Fig. 4), the
tuning parameters could be step sizes, iterations, convergence criteria, etc. Each component creates a
parameter associated with every tunable attribute and makes it available for linking. By default, all
the tuning parameters are disabled. These can be enabled by clicking on the button to the right of the
tunable attribute (the button is marked with symbol p in Fig. 4).

6 of 9

American Institute of Aeronautics and Astronautics

The linkable parameters provide a very powerful and
exible framework for communicating information
between components. For example, if performing an optimization inside a for loop the user wants to vary
the random seed for each optimization run, the loop counter could be connected to a synthetic block that
generates a pseudo-random value using the loop counter as input. The output value from the synthetic
block can then be linked to the random seed tuning parameter of the optimizer. Similarly, if the name of
some input/output �le depends on some counter or other variables, the name of the �le can be generated
inside a synthetic block as if it was a string variable and can be linked to the �le descriptor of the requisite
components. Such a facility allows for extensive scripting and automation of the simulation process in
VisualDOC. After the simulation data, parameters, and properties for each component are de�ned, the next
step is to link the data and parameters between di�erent components.

IV. VisualDOC Data Linker

The data linking interface in the new design allows the user to link data and parameters between any two
distinct components which belong to the same sub-
ow. Only the data having the same value type can be
linked. The data and parameter linking (
ow of information) is independent of the execution control. Data
linking implies transfer of values from one component to another. The value of the data and parameters are
updated after a component �nishes executing. The same data (information) can be referred to by di�erent
names (identi�er) in di�erent components. Data linking between two sub-
ows which are inside the same
parallel container is not allowed due to synchronization issues. This is due to the fact that if component A
depends on the output from component B, then A and B cannot be executed simultaneously (A will have to
execute after the execution of B has �nished). In such a case, the user should break the parallel container
into sequential (dependent) and parallel (independent) sub-
ows; i.e. the portions of the sub-
ow that do
not depend on each other for data can be executed simultaneously. A snapshot of the data linking interface
is shown in Fig. 5.

Figure 5. The VisualDOC Data Linker

In Fig. 5, the inputs/outputs from the Optimization component are linked to the Analysis 4 component.
Three types of links are supported. i) scalar to scalar links: The values are simply copied from one scalar
data/parameter to another, ii) scalar to vector links: The value of the scalar data/parameter is copied to all
elements in the vector, and iii) vector to vector links: The value of each element in the source data/parameter
is copied to the corresponding element in the destination data/parameter. The vector to vector links are
shown with bold lines. Two vectors can only be linked directly if they have the same number of dimensions
and identical size. A data/parameter can have multiple outgoing links, but only one incoming link. The link
creation is accomplished via drag-and-drop. To create a link, the user drags the source data and drops it on
the destination data. Continuous visual feedback is provided throughout the drag-and-drop operation. Since

7 of 9

American Institute of Aeronautics and Astronautics

linking is accomplished via drag-and-drop, it is a single step operation. Whenever the linked data/parameter
change in a way such that the existing links become invalid, they are highlighted in red, and the user must
either remove those links, or edit the data appropriately.

V. Simulation Monitors

It is often desirable to concurrently monitor the progress of a simulation. In VisualDOC, the simulation
(execution) of the model is completely independent of the monitoring process. The simulation monitors (e.g.
visualization plots, data tables, and real-time animations) are additional modules that the user can add
before, during, or after a simulation to monitor desired simulation parameters. The connections between
di�erent components de�ne the transition (transfer of execution) from one component to another. Also, it
is after the execution of a component that the simulation data is updated. Hence, the simulation monitors
are noti�ed whenever a component �nishes executing. With this version of software, the user can add any
number of simulation monitors and independently con�gure each of them. A snapshot of the interface to
create and con�gure the monitors is shown in Fig. 6.

Figure 6. The VisualDOC Monitor Editing Interface

The following are some of the salient features of the monitors.

� The simulation monitors themselves are not part of the work
ow, but they are observers that fetch
and display the desired information as per the user requirements. Thus, the monitors do not interfere
in the execution of the VisualDOC model.

� The monitors can be used both during (concurrent monitoring) and after a simulation (post-processing).
Some monitors, e.g. summary reports can only be invoked after a component has �nished executing.

� The monitors can be added/edited/removed while the simulation is under progress. Furthermore, the
user has the choice to enable/disable a speci�c monitor at any time during the simulation.

� The monitors in this new version of the software are true observers in that there is absolutely no
communication between the model execution engine and the monitoring process. Furthermore, the
models do not know anything about the monitors (the model code does not rely on the monitors).
However, the monitors know about the models (they rely on the model code to determine what data
to fetch from the database) and communicate directly with the database engine to fetch the relevant
data for display.

The new version of VisualDOC also provides pre-con�gured monitors for design components (e.g. vari-
able/objective/constraint history monitor for optimization). A snapshot of two pre-con�gured monitors is
shown in Fig. 7. The monitors are automatically disabled when the execution is performed in batch mode
or run in the background. Furthermore, when the simulation is run in non-interactive mode, the monitors

8 of 9

American Institute of Aeronautics and Astronautics

(a) Optimization History Monitor (b) Correlation Monitor

Figure 7. A snapshot of VisualDOC monitors

default to displaying the data as formatted text output on the console (and/or the user-speci�ed log �le).
The monitors are con�gured (fed data) via drag-and-drop. The data/parameter to be monitored is simply
dragged and dropped on the appropriate data handles of the monitors. Another important feature of the
new version is that the main window itself acts as a monitor when a simulation is running. The
ow-chart
highlights the currently running model, the data editor shows the current value of the data in the components
and it updates itself as soon as new values are available, the message area reports all the simulation related
information (if debug mode is enabled), etc. When a simulation is running, the model cannot be edited (all
the editing functionality is disabled), but all the display/visualization related functionality is still available.
As soon as the simulation is over (because of completion, user action, or some error), the main window
automatically returns to the edit mode. It is also possible to launch the simulation (model execution) in
batch mode as a separate process; in such a case, the user can continue to edit the current model, whilst a
di�erent snapshot (task) is running in the background.

VI. Conclusion

In this paper, we have presented the conceptual sketch of the basic skeleton of the new VisualDOC model
de�nition and execution paradigm. We have discussed �ve basic elements (
owcharting, data creation and
editing, parameter usage, data linking, and process monitoring) of the software. This paper describes the
fundamental design principles on which this improved version is based. The snapshots included in this paper
are from an early version of the new software (currently under development and testing). The primary
emphasis behind the new design of VisualDOC is to make it an easy, intuitive,
exible, and powerful tool
for design process de�nition and execution. It also contains a comprehensive collection of tools for process
monitoring and real-time visualization.

References

1Chandrasekaran, B., \Generic Tasks in Knowledge-based Reasoning - High-level Building Blocks for Expert System De-
sign," IEEE Expert , Vol. 1, 1986, pp. 23{30.

2Ullmann, D., The Mechanical Design Process, McGraw-Hill, St. Louis, MO, 1992.
3Pahl, G. and Beitz, W., Engineering Design - A Systematic Approach, Springer-Verlag London, 2nd ed., 2003.
4Perez, R. E., Liu, H. H. T., and Behdinan, K., \Evaluation of Multidisciplinary Optimization Approaches for Aircraft

Conceptual Design," 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, No. AIAA 2004-4537.
5Michelena, N., Park, H., and Papalambros, P. Y., \Convergence Properties of Analytical Target Cascading," AIAA

Journal , Vol. 41, No. 5, 2003, pp. 897{905.
6Vanderplaats, G. N., \EMDO - An Engineering Approach to Multidisciplinary Design Optimization," 11th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference, No. AIAA 2006-7110.

9 of 9

American Institute of Aeronautics and Astronautics

