

Generating Optimal Latin Hypercube Designs in Real Time

By

Felipe Antonio Chegury Viana

Ph.D. Student Federal University of Uberlandia Uberlandia, Brazil

Dr. Gerhard Venter

Associate Professor Stellenbosch University Matieland, South Africa

Dr. Valder Steffen

Professor Federal University of Uberlandia Uberlandia, Brazil

Dr. Vladimir O. Balabanov

VisualDOC Project Manager Vanderplaats R&D Colorado Springs, CO, USA

Dr. John Garcelon

Senior Research and Development Engigineer Vanderplaats R&D Monterey, CA, USA

Overview

Problem Area

Latin Hypercube Design

- Optimal Latin Hypercube Design
- Enhanced Stochastic Evolutionary Algorithm
- Structured Latin Hypercube Design
- Numerical Results
- Conclusions
- Questions

Problem Area

Location of Experimental Data Points

- Impact accuracy of generated metamodels
 - Use a reasonable number of experimental data points

• Design of Experiments

- Help locate experimental data points for developing metamodels
- Optimal Latin Hypercube (OLH) design is a popular design of experiments
 - Generating an OLH is a time consuming optimization problem!
- New Methodology (FAST)
 - Good starting point for OLH
 - Creating good approximations to OLH

Optimal Latin Hypercube Design A

- Popular for Computer Generated Experiments
- Good Space Filling Properties
- Model Independent
 - Any number of design variables
- Flexible
 - User selectable number of experimental data points

Presents a Difficult Optimization Problem

- High computational cost for large numbers of design variables and generated points
 - Limits practical use of OLH

Latin Hypercube Design

Latin Hypercube Design

- Basis for OLH
- Constructed for N design variables and for M experimental points by,
 - Each of the N variables is divided into M equally spaced levels
 - only one point is allowed to occupy each level
 - Often a random process is used to fill the levels
 - may result in designs with poor space filling qualities .
- OLH introduced to overcome this problem

N = 2

M = 5

OLH Theory

Points are pushed away from each other as much as possible

Difficult, time-consuming optimization process, for example: Minimize,

$$\phi_p = \left[\sum_{i=1}^s J_i d_i^{-p}\right]^{1/2}$$

where,

- p positive integer (i.e., 50) for the maximum distance criteria
- s number of distinct distance values
- J_i number of pairs of points, separated by distance di
- $\dot{d_i}$ distances between points

Distances between points d_i is composed of the distinct distances between individual points, d_{ii}

$$d_{ij} = \sum_{k=1}^{N} \left| x_{ik} - x_{jk} \right|$$

where,

N – number of design variables

 x_{ik} – is the k-th coordinate of the i-th point

- Enhanced Stochastic Evolutionary Algorithm (ESEA)
 - Creates OLH designs
 - Relatively fast (not like GA)
 - Developed by Jinb et al. from work by Saab and Rao
- Minimizes $\boldsymbol{\Phi}_{p}$
- Φ_p is a measure used to compare designs from our method with designs from ESEA

Structured Latin Hypercube

Empirical Approach

- Close to OLH without performing optimization
- Produces a LH design with better space filling properties than LH
- Useful standalone or as a starting point for OLH
- Uses a Seed Design to Construct the Approximate OLH

SLH Algorithm

- An *N*-dimensional OLH may be constructed from an *N*-dimensional seed design
- Example, 16x2 OLH (16 experimental points of 2 design variables)
 - Small LH used as a seed, some examples:

SLH Algorithm (2)

- Divide the design space into equal number of blocks
 - Each block will be filled with the seed design

 $LH _Size = NBlocks \times Seed _Size$ $NBlocks = NDiv^{ndv}$ $NDiv = \sqrt[ndv]{NPnts}$

16 x 2 LH design

16 – number of experimental points (*NPnts*)

2 – number of design variables (ndv)

4 – number of divisions (NDiv)

1 – number of experimental points in the seed (Seed_Size)

SLH Algorithm (3)

Step 7

Place the seed in each block

- Start at the origin of each block
- Shift the origin of the seed in each block
 - Couple the row shift and column shift

Numerical Results

Optimality Criterion (ϕp) Values

Design \ Approach	Worst	Random	"Optimal"	SLH
2 DV 120 pnts	0.5501	0.3333	0.0930	0.0928
2 DV 1024 pnts	0.5743	0.5070	0.0401	0.0353
3 DV 120 pnts	0.3668	0.1014	0.0334	0.0406
3 DV 512 pnts	0.3776	0.0834	0.0147	0.0171
4 DV 256 pnts	0.2793	0.0384	0.0109	0.0166
4 DV 400 pnts	0.2818	0.3755 E-1	0.6976 E-2	0.8764 E-2
5 DV 243 pnts	0.2232	0.2668 E-1	0.6842 E-2	0.1303 E-1
5 DV 500 pnts	0.2265	0.1639 E-1	0.3471 E-2	0.4334 E-2
10 DV 1024 pnts	0.1149	0.1424 E-2	0.6778 E-3	0.2195 E-2
10 DV 2000 pnts	0.1164	0.8858 E-3	0.3825 E-3	0.5945 E-4

"**Optimal**" values were obtained by averaging optimization results from 3 starting designs WCSMO-7 May 21 - May 25, 2007 Seoul, Korea

- Structured Latin Hypercube designs are good approximations to Optimal Latin Hypercube designs
 - Requires virtually no computational time
- For two dimensional cases, SLH cannot be improved by ESEA
 - ESEA improves SLH for higher dimensions (at a computational cost)
- SLH is a very good starting point for ESEA designs when the number of dimensions is high

Thanks for attending.