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The pessimist says “The glass is half empty.” The optimist says “The glass is half full.”
The Optimization Expert says “The glass is over designed.”

ABSTRACT

Numerical optimization is a little understood and even
lesser used design tool which can have a significant effect
on our efforts to reduce energy consumption, improve envi-
ronmental quality and provide safer, more comfortable
vehicles. Optimization is a numerical search method that
can be applied to almost any engineering discipline where
we perform computer analyses, whether structures, fluid
dynamics or almost anything else. Though seldom taught in
engineering colleges, these design methods and tools have
been developed over the past forty years to a high level of
maturity.

The purpose of this paper is twofold. First, we will discuss
the basic concept of design optimization. It will be seen that
optimization can be coupled with almost any computer
analysis and even experimental tests to change the impor-
tant inputs to improve one or more outputs, with limits on
other outputs.

The second purpose will be to demonstrate that optimiza-
tion works. Examples will be given to demonstrate that the
mass of existing parts can be reduced by several percent
with no loss in strength, design quality can be improved
with minimal increase in mass and hybrid vehicle economy
can be improved while reducing pollutants. An additional
bonus of optimization is the engineering insight it provides
to any design problem.

It is concluded that, whether we apply it to existing designs
or to future hybrid or fuel cell vehicles, optimization technol-
ogy can be used with minimal added cost or effort to signif-
icantly reduce energy consumption.
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INTRODUCTION

In 1923, Henry Ford said “Saving even a few pounds of a
vehicle’s weight means it could go faster and consume less
fuel. Reducing weight involves reducing materials, which,
in turn, means reducing cost as well.” (1)

In the U.S. today, we use about seven million barrels (385
million gallons) of gasoline daily. If we can reduce this con-
sumption by only one percent, at a cost of $1.50/gallon, we
can save nearly six million dollars daily! This is a savings
directly to the consumer. This benefit does not even
account for the savings in natural resources, reduced pollu-
tion, etc.

Figure 1 shows the relationship between vehicle mass and
fuel economy for present vehicles from sub-compact
through large SUVs. While there is scatter, largely due to
differences in vehicle performance, the general trend is
clear. If we reduce mass by one percent, we improve econ-
omy by about two percent. Of course, there is a big differ-
ence between the capabilities of small and large vehicles. If
we consider the effect of mass alone, we can expect a one
percent mass reduction to produce about 0.7 percent
improvement in economy (2).

With present technology and materials, we clearly cannot
reduce the mass of a large SUV by 50 percent. However, it
is certainly reasonable to strive for a one or two percent
reduction in mass. The question is, “How do we achieve
this.” The answer is “Design Optimization.” But we need not
stop at mass reduction. Why not improve efficiency of the
engine, whether conventional or other. Why not reduce
aerodynamic drag, reduce energy consumption of the heat-
ing and air conditioning system or the rolling resistance of
tires? The answer is the same; design optimization.
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Figure 1. Fuel Economy Versus Vehicle Mass

WHAT IS DESIGN OPTIMIZATION?

Optimization is intrinsically tied to our desire to excel,
whether we are an athlete, artist or engineer. We all adjust
some parameters, perhaps our time, to minimize or maxi-
mize one or more results such as income, leisure time or
job satisfaction. We do this subject to limitations or con-
straints, such as physical ability, time available, legal
restrictions or moral codes of conduct. Thus, whatever our
field of endeavor, we constantly strive to solve a con-
strained optimization problem.

In engineering, we create products. To do this, we normally
use computer analysis to judge the quality of our designs.
We use computational fluid dynamics codes to calculate
energy requirements and flow patterns in a ducting system.
We use finite element analysis to calculate stresses,
deflections, vibration frequencies, etc. of a structure. In
almost all disciplines, we use computational, and some-
times experimental, tools to judge the quality of our pro-
posed designs. If not satisfactory, we modify the design
and perform repeated analyses in an effort to improve the
product, or at least meet the design requirements.

This traditional approach of analyze and revise normally
involves only changing a few variables (often only one) at a
time and does not account very well for the interaction
among the variables.

Now imagine we can change large numbers of design
parameters simultaneously in order to improve the design
while satisfying all design requirements, at the same time
accounting for the interactions among the parameters. This
is exactly what numerical optimization does.

Our computer analysis program has a set of inputs that we
may consider to be contained in a vector X. Based on this
input, the analysis provides outputs. One or more of these
outputs can be called an objective function which we wish

to minimize or maximize. Other outputs may be required to
be within some bounds. These we call constraints. Both the
objective(s) and constraints are functions of the input or
design variables contained in X.

Numerical optimization solves the general problem (3):
Find the values of the design variables contained in X that
will;

Minimize   (1)

Subject to:

 (2)

 (3)

The function, F(X) is referred to as the objective or merit
function and is dependent on the values of the design vari-
ables, X, which themselves include member dimensions or
shape variables of a structure as examples. The limits on
the design variables, given in Equation 3, are referred to as
side constraints and are used simply to limit the region of
search for the optimum. For example, it would not make
sense to allow the thickness of a structural element to take
on a negative value. Thus, the lower bounds are set to a
reasonable minimum gage size. If we wish to maximize
F(X), for example, maximize fuel economy, we simply mini-
mize the negative of F(X). 

The gj(X) are referred to as constraints, and they provide
bounds on various response quantities. A common con-
straint is the limits imposed on stresses at various points

within a structure. Then if  is the upper bound allowed on
stress, the constraint function would be written, in normal-
ized form, as

 (4)

i = element, 
j = stress component, 
k = load condition

Additionally, we could include equality constraints of the
form

 (5)

Normally, equality constraints can be included in the origi-
nal problem definition as two equal and opposite inequality
constraints.

Now consider how we might solve this general optimization
problem. One approach would be to pick many combina-
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tions of the design variables and call our analysis program
to evaluate each, picking the one with the best objective
function which also satisfies all constraints. This would be a
classical random search approach or perhaps the modern
version known as genetic search (4).

Another approach would be to perturb each design variable
and evaluate the objective and constraint functions. This
would determine the sensitivity (gradient) of the design with
respect to the variables. With this information, we can
mathematically (numerically) determine how to change the
design variables to improve the objective while satisfying
the constraints. There are a multitude of such “gradient
based” methods and considerable software available today
(3).

These methods closely model what we do in design
already. Normally, we begin with a candidate design and
ask “How can we change the design to improve it?” Thus,
we modify our design as;

 (6)

Optimization does much the same thing, but in two steps.
First, we ask what direction to move in and then we ask
how far to move. That is,

 (7)

where S is the search direction and α is the number of
steps we move in this direction (partial steps are allowed).

The difference in optimization algorithms is mainly in how
we calculate the search direction, S, and how we do the
“one-dimensional search” to determine α. The key point
here is that all variables are considered simultaneously
according to their effect on the objective function and all
constraints. Also, since this is all automated and today’s
computers are very fast, we can find an optimum design
with much less time and effort than just finding an accept-
able design using traditional methods.

This problem statement provides a remarkably general
design approach and a multitude of methods are available
today for solving this general problem. Much of the theoret-
ical development has been in the operations research com-
munity and applications there are widespread today. In
engineering, while development has been underway for
over forty years, applications have lagged far behind. The
time has come for that to change.

HISTORY

Numerical methods for solving the optimization problem
have been under development for over fifty years. Creation
of linear programming techniques by Dantzig (5), together
with the advent of the digital computer, led to the applica-
tion of linear programming techniques to the plastic design

of beam and frame structures as described by Hyman (6).

Schmit (7) in 1960 was the first to offer a comprehensive
statement of the use of mathematical programming tech-
niques to solve the nonlinear, inequality constrained prob-
lem of designing elastic structures under a multiplicity of
loading conditions. He combined numerical optimization
with finite element analysis, itself an emerging technology,
to solve the structural synthesis problem.

Since then, structural optimization techniques have
advanced to the point that we have solid commercial soft-
ware capable of finding an optimum structure in a fraction
of the time needed to find only an acceptable structure by
other means.

Additionally, optimization techniques have been applied to
a wide range of design tasks, such as conceptual aircraft
and ship design, aerodynamic shape, electronic compo-
nents, hybrid automobiles and a multitude of others.

Today, optimization technology can be divided into two key
categories; structural optimization and general optimiza-
tion. These will be discussed separately.

Structural Optimization – Structural optimization is consid-
ered separately because the methods here are particularly
well developed. Today, structural optimization, based on
linear finite element analysis, can be routinely performed
for member sizing, shape and topology optimization.
Almost any calculated response can be treated as the
objective function or can be constrained. Most of the time,
mass is treated as the objective function to be minimized,
though it is also common to maximize frequencies (stiff-
ness). Constraints typically include limits on stresses,
strains, frequencies, dynamic response, thermal response,
buckling loads and aeroelastic response. A typical struc-
tural optimization problem may consist of perhaps 500
design variables with 1,000,000 constraints. Indeed, in this
author’s experience, a mass minimization problem with
over 135,000 design variables has been solved subject to
frequency constraints.

The key to today’s efficiency in structural optimization is
approximation techniques (8, 9). Here, the original problem
is approximated in terms of intermediate variables and
intermediate responses. These approximations are gradi-
ent based and gradients are efficiently calculated as part of
the finite element analysis (10, 11). The approximate opti-
mization problem is then solved, a new finite element anal-
yses is performed, and the process is repeated to
convergence. These approximations go far beyond simple
linearization and are of such high quality that the design
variables can typically be changed by up to 50% before a
new analysis is needed. The result is that, for member siz-
ing and shape optimization we require only about ten
detailed finite element analyses and for topology optimiza-
tion about twenty detailed analyses. This is a key issue
because finite element models of the order of one million
degrees of freedom are becoming commonplace and a sin-

XNew XOld δX+=

XNew XOld αS+=
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gle analysis can be quite expensive. Thus, with this effi-
ciency, we can achieve an optimum design for a cost well
below the cost of just achieving an acceptable design in the
past.

General Applications – Beyond the field of finite element
based structural optimization, we do not usually have gradi-
ent information readily available and so finite difference
gradients are used. Also, we do not have highly refined
approximation techniques for these other disciplines. Thus,
we simply treat the optimization process as a “black box,”
where we directly couple our analyses with the optimization
program.

These limitations are only issues of efficiency. They do not
effect the optimization process or the underlying algo-
rithms. The exceptional computational resources available
today make it possible to solve complex optimization prob-
lems using this black box approach. Additionally, response
surface approximations, where we approximate the original
problem using curve fits, work well for problems in the 10-
20 variable category (12, 13). Finally, distributed or parallel
computing can dramatically reduce computational times,
even when the analysis is very complex and time consum-
ing (14).

Reference 3 discusses numerous applications of this type
of optimization, including airfoil, heat exchanger, concep-
tual aircraft and ship design as examples.

OPTIMIZATION WORKS

To indicate the benefits of optimization when applied to
next generation automobiles, consider the hybrid vehicle
shown in Figure 2.

Figure 2. Hybrid Electric Vehicle

This vehicle was modeled using the ADVISOR program
developed by the National Renewable Energy Laboratory
(NREL) in Golden Colorado (15, 16). The ADVISOR pro-
gram was coupled with the VisualDOC (17) program to per-
form optimization of the control system.

This is a multi-objective optimization task where we wish to
maximize fuel economy, minimize hydrocarbon emissions
and minimize nitrous oxide emissions. Constraints include

acceleration and grade climbing requirements, and mini-
mum battery charge as examples. The design variables are
listed in Table 1.

Note that this design was for a fixed mass vehicle. If we
use optimization to also reduce vehicle mass, correspond-
ing further improvements in economy and emissions can
be expected.

The optimization results are given in Table 2. 

While the ADVISOR code is a research program, this dem-
onstrates the ease with which optimization could be added
to company proprietary software as well, for modeling
future vehicles. The gains achieved through using optimi-
zation should be similar. Most importantly, optimization
allows us to compare competing concepts on a more ratio-
nal basis, where each design is the best possible, rather
than considering single “point” designs.

Next, consider the design of a heat sink for electronic appli-
cations. Here VisualDOC was coupled with the FLUX2D
thermal analysis program from Cedrat Corporation (18).
The initial design is shown in Figure 3. Heat is generated
by the thyristor and dissipated by the heat sink. The objec-
tive is to minimize the material of the heat sink, and the

Table 1: Hybrid Vehicle Design Variables

Description Units

Battery Pack’s High State of Charge Percentage

Battery Pack’s Low State of Charge Percentage

Electric Launch Speed (Vehicle speed 
below which vehicle operates as a Zero 
Emissions Vehicle)

Meters/Sec.

Charge Torque (Torque loading on the 
engine to recharge the battery pack when-
ever the engine is on)

Meters/Sec.

Off Torque Fraction (Fraction of the torque 
capability of the engine for a given speed at 
which the engine may shut off)

- - -

Minimum Torque Fraction (Fraction of the 
torque capability of the engine for a given 
speed at which the motor may act as a gen-
erator)

- - -

Table 2: Optimization Results

Objective Percent
Change

Mileage +6.5

Hydrocarbon Emissions -3.6

Nitrous Oxide Emissions -11.5
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design variables are the thickness of the base, height and
width of the fins. Constraints include heat dissipated to the
air, heat dissipated between the heat sink and the support-
ing chassis and the maximum temperature allowed in the
thyristor. The initial design was chosen to have an unrea-
sonably thick base to test the optimization. The optimum
design is shown in Figure 4 and is very similar to heat sinks
commonly found in electronic devices. This demonstrates
the ease with which a commercial analysis program can be
coupled with optimization.

Figure 3. Initial Heat Sink Geometry

Figure 4. Optimum Heat Sink Geometry

As a final example to demonstrate coupling existing com-
mercial analysis software with optimization, the Fluent CFD
code (19) was coupled with VisualDOC. As a simple dem-
onstration, the lift to drag ratio of an airfoil was maximized.
The initial design was a NACA 0012 airfoil and the design
condition was at very low speed (20 m/s). The design vari-
ables were the camber, position of maximum camber, max-
imum thickness and angle of attack. Response surface
approximations were used to optimize the airfoil and the lift/
drag ratio was increased by 160%. The optimization
required fifteen Fluent analyses. The optimum airfoil is
shown in Figure 5. Note that, while this is an aerospace
example, similar applications exist in fan, pump and torque

converter design.

Figure 5. Optimum Airfoil

These examples serve to demonstrate that we have well
established technology and software to couple a wide
range of commercial analysis software with optimization.
Coupling of the analysis programs used here typically
required less than one week, most of which was spent by
the optimization engineer to become familiar with the anal-
ysis software, with only a small portion of the time spent on
the actual coupling of the programs.

Now consider some examples of structural optimization.
Here, the methods are highly refined so that, even if we
consider several thousand design variables. We typically
achieve an optimum using about ten detailed finite element
analyses if we treat member dimensions and shape as
design variables, and twenty detailed analyses if we design
the topology (remove chunks of material).

Figure 6 shows topology optimization of a truck front cross-
member. 

Figure 6. Topology Optimization

The structure was first modeled by filling the available
design space with solid elements. Topology optimization
was applied by letting the density of each element be a
design variable and maximizing the stiffness of the struc-
ture. This example included over 10,900 design variables.
Those elements whose density was reduced to zero were
removed from the structure to provide the optimum topol-
ogy shown in the right half of figure 6. Optimization
required 20 detailed finite element analyses to achieve this
result. This example is several years old and today smooth-
ing techniques are used to generate a more smooth topol-
ogy. After this first step, shape optimization can be applied
to further refine the structure, including stress and other
constraints.

THYRISTOR

HEAT SINK

CHASSIS

THYRISTOR

HEAT SINKCHASSIS
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Figure 7 shows a heavy truck where the front suspension
mount is to be designed. The objective was to minimize
mass, subject to the requirement that the maximum stress
not exceeded the maximum stress in the existing design.
As shown in Figure 8, the mass was reduced by 30% with
no reduction in strength. The optimum design was
achieved using ten detailed finite element analyses.

 

Figure 7. Truck Suspension Support

Figure 8. Truck Suspension Support Results

Figure 9 shows an air suspension system, where we wish
to design the spring. The initial design exceed the stress
limit by 65%. With optimization, the spring was resized by
reducing the maximum stress by 65% with only a 3.5%
increase in mass.

Figure 9. Spring Design

Figure 10 shows a car seat where we wish to minimize the
mass with limits on stress and deflections. The design vari-
ables were the material thicknesses of the recliner and the
spring support constant. With optimization, the mass was
reduced by 45% while satisfying all constraints.

Figure 10. Car Seat Model

Next, consider the gas tank shown in Figure 11.

Figure 11. Gas tank

The design requirements included both stress and stiff-
ness. Also, the interior volume of the tank could not be less
than a prescribed value. Visteon corporation optimized this
tank using 99 variables defining the shape of the “beads”
on the bottom of the tank (20).
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Finally, consider the automobile dash cross beam shown in
Figure 12.

Figure 12. Dash Cross-Beam

This is made of three principal components as shown in
Figure 13.

Figure 13. Dash Cross-Beam Components

Optimization was performed by Delphi Automotive Sys-
tems (21). First, topology optimization (such as used in Fig-
ure 6) was performed for four loading cases to identify
several regions for improvement. Then, element sizing opti-
mization was performed to minimize mass, subject to
stress, deflection and manufacturability limits. Optimization
in conjunction with material and process changes was able
to reduce the mass by 33% and material cost by 39%.

These problems were solved using the GENESIS structural
optimization software (22). While these examples are typi-
cal of structural optimization, they represent only a small
fraction of design tasks being solved today. In each case,
except for the topology optimization example of Figure 6,
the initial design used for optimization was an existing
design, created by conventional design methods.

Also, much larger problems are feasible where thousands
of design variables and millions of constraints can be
included. Recently, a mass minimization automotive body

design problem was solved subject to increasing the funda-
mental frequency by 10%. The finite element model was
800,000 degrees of freedom and 105,000 member sizing
variables were considered. An optimum design was
achieved using 14 detailed finite element analyses and
required only 0.3% increase in body mass.

CONCLUSIONS

Numerical optimization methods for design have been
described here and demonstrated with a variety of applica-
tions. It has been shown that this design tool provides a
powerful means of designing present and future automo-
biles. In almost all cases where this author and his associ-
ates have applied optimization to design, the existing
design has been improved by five percent or more. Further-
more, optimum designs are found in a fraction of the time
needed to improve the design by traditional “cut and try”
methods.

Finally, optimization is in no way limited to the examples
presented here. These design tools can be used through-
out the energy industry, whether for automobiles or power
plants or windmills and beyond. The key to their use is that
we must change the way we do design. The changes are
not big, only necessary.
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