

American Institute of Aeronautics and Astronautics

1

Very Large Scale Continuous and Discrete Variable
Optimization

Garret N. Vanderplaats*
Vanderplaats Research & Development, Inc.

1767 S. 8th Street
Colorado Springs, CO 80906

An optimization algorithm is presented which is capable of solving nonlinear,
constrained optimization tasks of well over one hundred thousand design variables. This
method is an advanced exterior penalty function approach which uses very little central
memory and very little computational time within the algorithm. The price paid for the
large scale capability is that this method requires 3-5 times as many function and gradient
evaluations to converge. An ad-hoc method for solving discrete optimization problems is
included which reliably obtains a reasonable discrete solution. Examples are presented to
demonstrate the method.

Nomenclature
F(X) = objective function
gj(X) = j-th constraint function
m = total number of constraints
n = number of design variables
P(X) = penalty to drive design variables to a discrete value
q = iteration number in unconstrained sub-problem

p
jq = individual penalty parameter

rp = global penalty parameter
R = penalty parameter for discrete variable optimization
Sq = search direction at iteration q
X = vector of design variables
Xi = i-th design variable

L
iX = lower bound on the i-th design variable
U
iX = upper bound on the i-th design variable

Φ = pseudo-objective function
β = conjugate direction multiplier
∇ = gradient operator

I. Introduction
ith the increased use of optimization, the size of the problems being solved has grown rapidly. In structural
optimization, problems with tens of thousands of design variables and millions of constraints are now being

solved. For multidiscipline (MDO) problems, the number of variables and constraints can be even larger. In this
case, in the past, decomposition methods were developed due to our inability to handle such large problems.

Non gradient methods, such as genetic algorithms, have been found to be both inefficient and unreliable for more
than a few variables. Common gradient based methods, such as Sequential Quadratic Programming, can
theoretically handle large problems but two issues quickly arise. First, these methods require solution of a large and
often time consuming sub-optimization task to find the search direction and, second, they require storage of large

* President, Fellow AIAA.

W

American Institute of Aeronautics and Astronautics

2

amounts of information (both gradients and Lagrangian approximation information). This second issue may be
handled using spill logic, but this can also be complicated and inefficient.

There is clearly a need for methods which will solver very large problems with limited central memory and
which avoid large sub-optimization tasks. Such a method will be presented here. While it was developed primarily
for structural optimization, it is equally useful for MDO tasks where gradient information is available. In either
case, it is desirable to have high quality approximations since this algorithm requires more function and gradient
evaluations than before.

When designing composite structures or piping systems, for example, the design variables must be discrete or
integer. Genetic algorithms and branch and bound methods can be used here but are inefficient for problems of
more than a few variables. The algorithm described here includes an ad-hoc method for solving large discrete or
mixed continuous-discrete variable problems. This method does not insure a theoretical optimum but does produce
a reasonable discrete solution efficiently.

II. Historical Background

Since the introduction of numerical optimization to structural design by Schmit in 19601, the size of problems

solved by these methods has grown exponentially as shown in Figure 1.
In recent years, the focus in gradient based algorithm development has been on Sequential Quadratic

Programming and similar methods which possess very strong convergence characteristics. However, as problem
size has grown, these methods have been found to have significant limits. First, they require large memory to store
necessary gradient information and second, they require a sub-optimization task to find a search direction. The
memory requirement may be alleviated by out of memory storage operations but this is complicated and inefficient.
The direction finding sub-problem can require significant computational effort which again leads to inefficiencies.
In general, these modern methods can efficiently
solve large problems with only a few active
constraints or small problems with many
constraints (because only a few will be critical).
The difficulty arises when we have many design
variables and many active constraints.

In the 1960’s Sequential Unconstrained
Minimization Techniques (SUMT) were popular2
but, as noted above, where replaces by more
direct methods. Recently, there has been renewed
interest in SUMT, focused primarily on interior
point methods3.

In developing the present capability numerous
SUMT methods were investigated leading to
adoption of a new exterior penalty function
approach4, implemented in the BIGDOT
optimization software5. This method will be
reviewed here and recent enhancements will be
identified. General enhancements have been
made, allowing for solution of much larger
problems. Also, a discrete variable algorithm has
been implemented for solution of discrete or
mixed continuous-discrete problems.

III. The BIGDOT Algorithm
The method developed here begins by solving the continuous variable problem and then finding a “reasonable”

discrete solution. Therefore, it is required that the problem be solvable as a continuous problem. This is consistent
with the assumptions of traditional branch and bound methods.

A. Continuous Variable Optimization
The basic approach used here is to convert the original constrained optimization problem to a sequence of

unconstrained problems of the form;

N
U

M
B

E
R

 O
F

D
E

SI
G

N
 V

A
R

IA
B

L
E

S

BIGDOT
500,000 VARIABLES

Figure 1. Growth in Optimization Problem Size

American Institute of Aeronautics and Astronautics

3

Minimize

 2

1

() () { [0, ()]}
m

p
p j j

j

X F X r q MAX g X
=

Φ = + ∑ (1)

Subject to;

 1,L U
i i iX X X i n≤ ≤ = (2)

where X is the vector of design variables, F(X) is the objective function and gj(X) are the constraints.

The subscript/superscript, p is the outer loop counter which we will call the cycle number. The penalty
parameter, rp, is initially set to a small value and then increased after each design cycle. The only difference between
this formulation and the traditional exterior penalty function is the addition of individual penalty parameters, p

jq , on
each constraint. These multipliers are similar to the Lagrange multipliers used in the Augmented Lagrange
Multiplier Method6, but are calculated by a proprietary formula. Equation 2 imposes limits on the design variables
(side constraints) which are handled directly.

If equality constraints are considered, they can just be converted to two equal and opposite inequality constraints.
The unconstrained penalized function defined by Eq. 1 is solved by the Fletcher-Reeves conjugate direction

method7, which requires virtually no memory.
The gradient of Φ(X) is required during the optimization process.

1

() () 2 { [0, () ()]}
m

p
p j j j

j

X F X r q MAX g X g X
=

∇Φ = ∇ + ∇∑ (3)

Here, the choice of the exterior penalty function becomes apparent because only gradients of violated constraints
are required. Furthermore, it is not necessary to store all gradients at once. Noting that Eq. 3 is a simple addition of
gradient vectors so, in the limit, we can calculate only one gradient (objective or constraint) at a time.

As an indication of computer memory required by various methods, the proposed method is compared with the
three methods used by the DOT program8. This is presented in Table 1, where MMFD is the Modified Method of
Feasible Directions, SLP is the Sequential Linear Programming Method and SQP is the Sequential Quadratic
Programming Method.

The memory requirements for the DOT methods are the
number of words for storage of all internal arrays. For the
BIGDOT method, the two memory requirements are the
minimum, where only 1 gradient vector is calculated at a time,
and the maximum, were all possible gradients are stored in
memory. The number of constraints equals the number of
design variables.

As can be seen, as the problem size grows, storage
requirements for the earlier methods grows exponentially.
However, for the present method, storage is much less and the
requirement grows only linearly with problem size. If there are
many more constraints than design variables, the requested
storage for the earlier methods grows even more rapidly.

As noted above, the unconstrained minimization sub-problem is solved by the Fletcher-Reeves algorithm. Here,
at iteration q, the search direction is found as;

If q = 1

Table 1. Storage Requirements

Number of Design Variables
Method 100 1,000 10,000
MMFD 53,000 5X106 5X108

SLP 113,000 11X106 11X108
SQP 119,000 11.5X106 12X108

BIGDOT 1,400
to

11,000

14,000
to

10X105

140,000
to

10X107

American Institute of Aeronautics and Astronautics

4

 0()qS X= −∇Φ (4)

If q > 1

 1 1()q q qS X Sβ− −= −∇Φ + (5)

where

1

2

()

()

q

q

X

X
β

−

−

∇Φ
=

∇Φ
 (6)

Once the search direction is calculated, the one-dimensional search is calculated by polynomial interpolation.
It can be argued that more modern quasi-Newton methods are a better choice for solving the sub-problem.

However, these methods require much more storage. Also, computational experience has shown that the Fletcher-
Reeves algorithm is comparable in efficiency and reliability if carefully programmed.

During the unconstrained minimization sub-problem, almost no effort is required to calculate the search
direction, so the computational time spent in the optimizer itself is negligible. The cost of optimization is almost
completely the cost of analysis and gradient computations. Thus, it is desirable (but not essential) that high quality
approximations are available, as is the case in modern structural optimization.

Version 1 of BIGDOT required that gradient information be provided directly and, if only a few gradients could
be stored in memory, repeated returns would be made to the user to calculated the needed set. Version 2 allows the
user to provide gradients in compacted form via a binary file. If convenient, more than the requested number of
gradients can be provided. This has the advantage that, for strictly linear problems, gradients need only be
calculated and stored once. Also, for problems with a nonlinear objective function but linear constraints, the
objective function gradient is calculated as needed but the constraint gradients need to be calculated only once.

B. Discrete Variable Optimization

Traditional branch and bound methods or genetic algorithms become hopelessly inefficient when used for

optimization problems of more than a few variables (say 10 or 20). For large scale optimization, no “theoretically
correct” method is available for nonlinear constrained optimization problems. Therefore, an ad-hoc method is used
here with the goal of finding a “reasonable” discrete solution which is feasible.

One approach to this is offered in ref. 9, where a sin or cosine shaped penalty function was created to drive the
design to a nearby discrete solution. Unlike ref. 9, the sin shape was found here to be most reliable. Also, it has
been modified slightly from the reference to be of the form;

1

1 0.25(3)() 1 sin 2
2

L Un
i i i

U L
i i i

X X XP X R
X X

π
=

  − + = =  −   
∑ (7)

where L

iX is the next lower discrete value and U
iX is the next higher discrete value.

This, by its nature, creates a multitude of relative minima. Therefore, if these penalties are imposed from the
beginning, there is a high probability of finding a solution that is not near the true optimum. Thus, it is desirable to
first solve the continuous variable problem to provide a good starting point. Even doing this, the approach is very
sensitive to penalty parameter values and may produce either a non-discrete solution or an infeasible one.

American Institute of Aeronautics and Astronautics

5

During this phase of the optimization, it is important to include the original penalty function as well to maintain
feasibility with respect to the general constraints.

Equation 7 attempts to drive the variables to a discrete value. However, this penalty function creates numerous
relative minima and has little assurance of insuring feasibility with respect to the original constraints or of actually
driving all discrete variables to a discrete value. Therefore, after several cycles, progress is evaluated. If all discrete
variables are not driven to an allowed value, we ask how to change each variable such that it will move to a discrete
value with minimum effect on the objective function and at the same time maintaining feasibility with respect to the
original constraints.

To achieve this, we first get the gradient of the objective function and the penalty term of the pseudo-objective
function, with the penalty multipliers set to unity (get the sum of violated constraint gradients). We then seek to
drive the solution to a discrete value with minimum increase in the objective function while remaining feasible with
respect to the constraints.

The general algorithm for this is;
1. Including only discrete variables, and bypassing variables that are already at a discrete value, search for

/
/

i

i

P X
F X

∂ ∂
∂ ∂

 (8)

2. Calculate the changes in Xi that will move Xi to its next larger and smaller discrete value.
3. For each such δXi estimate the maximum constraint value based on a linear approximation.
4. Move Xi to the discrete value that maintains feasibility.
5. Repeat from step 1 until all discrete variables are at a discrete value.

This algorithm drives the design variables to a discrete value while still including the original constraints via the

original SUMT algorithm. This has the limitation that variables can move only one discrete value up or down from
the continuous solution during each cycle.

The final algorithm finds a feasible, discrete solution efficiently and seldom fails. However, it must be
remembered that this is not guaranteed to be a theoretical optimum, only a good discrete solution.

This algorithm has the advantage that it is a straightforward addition to the continuous variable algorithm and
that it requires very little memory and computational effort.

IV. Examples
Examples are presented here to demonstrate the algorithm described above.

A. Cantilevered Beam
The cantilevered beam shown in Figure 2 is designed for

minimum material volume. Here, five segments are shown.
In general, N segments will be considered. The design
variables are the width, bi, and height, hi of each of the N
segments. The beam is subject to stress limits, σ , at the left
end of each segment and the geometric requirement that the
height of any segment does not exceed twenty times the
width. There are a total of 2N design variables and 2N
constraints, as well as lower bounds on the variables.
Therefore, at the continuous optimum, it is expected that the
design will be fully constrained (as many active constraints
as design variables) because the structure is statically
determinate. If the beam was allowed to be completely
continuous without lower bounds on the design variables, the
theoretical optimum is 53,714.

l1 l4 l5l3l2

Y

X

1 2 3 4 5

P

hi

bi

P = 50,000 N

E = 2.0x10 N/cm

L = 500 cm

 = 14,000 N/cm

7 2

2σ

Figure 2. Cantilevered Beam

American Institute of Aeronautics and Astronautics

6

The design task is now defined as;

Minimize

1

N

i i i
i

V b h l
=

=∑ (9)

Subject to;

 1 0 1,i i Nσ
σ

− ≤ = (10)

 20 0 1,i ih b i N− ≤ = (11)

 1.0 1,ib i N≥ = (12)

 5.0 1,ih i N≥ = (13)

Here, N=25000, 50000,
125000 and 250000 was used to
create problems of 50000,
100000, 250000 and 500000
design variables, respectively.

For the discrete solution,
each variable was chosen from
sets of discrete values in
increments of 0.1.

The results are presented in
Table 2. The information in
parentheses (../..) are the number of function evaluations over the number of gradient evaluations. The numbers in
brackets [../..] are the number of active constraints over the number of active side constraints at the optimum, where
a constraint is considered active if its value is greater than -0.05 and no more positive than 0.003. Except for the
500,000 variable problem, all constraints were satisfied at the optimum. The 500,000 variable problem failed to
achieve a feasible discrete solution, even though it generated 500,000 discrete values. This problem ended with 79
violated constraints having a maximum violation of just over one percent.

In each case, the optimum achieved was about the same and the discrete solution was only slightly larger,
indicating a “good” discrete solution. It is particularly noteworthy that the number of function and gradient
evaluations is nearly constant. This suggests that the algorithm is very scalable regardless of problem size.

B. Car Body Reinforcement
The BIGDOT optimizer has been added to the GENESIS structural optimization program10 to perform large

scale structural optimization. To date, topology optimization problems in excess of 2,000,000 variables and member
sizing problems in excess of 450,000 variables have been solved.

Figure 3 shows a car body model which we wish to reinforce to increase the bending and/or torsion frequency.
The approach used here was to allow every element in the model was optimized for thickness (with a lower bound
of the original design) with the constraint that only a specified fraction of the material may be used. Here, 34,560

Table 2. Optimization Results

Number of Design Variables
 50,000 100,000 250,000 500,000

Continuous
Optimum

53,744
(243/46)

[49,979/46]

53,720
(209/38)

[99,927/150]

53,755
(262/49)

[249,919/211]

53,730
(266/50)

[499,700/1732]
Discrete
Optimum

54,864
(92/38)

54,848
(96/25)

54,887
(143/24)

54,821
Infeasible

gmax = 0.011

American Institute of Aeronautics and Astronautics

7

Initial Design Final Design

Figure 14. Skeletal Support

Figure 3. Car Body Reinforcement

sizing variables were used. While somewhat difficult to see in Figure 3 (unless viewed in color), reinforcement was
added in the areas of the firewall, rocker panels and rear fender areas.

Table 3 gives the increase in bending or torsion frequency for different values of added mass.

C. Topology Optimization of a Support
Figure 4 is a topology optimization

example where just over one million design
variables were used. This structure was
optimized to minimize strain energy under
the applied load.

V. Summary
An algorithm has been developed for solving very large optimization tasks, which uses limited central memory

and which avoids solution of a large sub-optimization task. The memory requirements grow only linearly with
problem size. The algorithm is based on a modern exterior penalty function method which exhibits approximately
constant efficiency, independent of problem size. Once a continuous optimum has been achieved, a discrete solution
is found using an ad-hoc algorithm which drives the optimum to a feasible discrete solution with minimal increase in
the objective function. Experience has shown that the optimization problem size is no longer limited by the
optimizer, but instead by the ability of the analysis and sensitivity software to provide the needed information.

VI. References

1 Schmit, L.A., “Structural Design by Systematic Synthesis,” Proceedings, 2nd Conference on Electronic Computation,

ASCE, New York, 1960, pp. 105-132.
 2Fiacco, A. V., and G. P. McCormick: Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John

Wiley and Sons, New York, 1968.
3Hager, W.W., D. W. Hearn and P. M. Pardalos: “Large Scale Optimization; State of the Art,” Kluwer Academic Publishers,

1994, pp. 45-67.
4 Very Large Scale Optimization. NASA Langley Research Center Phase I SBIR Contract NAS1-99026 and continued under

a Phase II Contract NAS1-00102.
5BIGDOT User’s Manual, Version 2.0: Vanderplaats Research & Development, Inc., Colorado Springs, CO, 2004.
6Rockafellar, R. T.: The Multiplier Method of Hestenes and Powell Applied to Convex Programming, J. Optimization Theory

Applications, vol. 12, no. 6, pp. 555 – 562, 1973.

Table 3. Frequency Increases

Increased Frequency (Hz) Added
Mass
(Kg)

Maximize First
Torsion

Frequency

Maximize First
Bending

Frequency
2.64 4.81 6.42
7.32 7.56 9.89

15.06 9.66 112.15

American Institute of Aeronautics and Astronautics

8

7Fletcher, R. and C. M. Reeves: Function Minimization by Conjugate Gradients, Br. Computer J., vol. 7, no. 2, pp. 149-154,
1964.

8DOT User’s Manual, Version 5.0: Vanderplaats Research & Development, Inc., Colorado Springs, CO, 1999.
9Shin, D. K., Gurdal, Z. and Griffin, O. H., Jr., “A Penalty Approach for Nonlinear Optimization with Discrete Design

Variables,” Eng. Opt., Vol. 16, pp. 29-42, 1990.
10GENESIS User’s Manual, Version 7.5: Vanderplaats Research & Development, Inc., Colorado Springs, CO, 2004.

