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An optimization algorithm is presented which is capable of solving nonlinear, 
constrained optimization tasks of well over one hundred thousand design variables.  This 
method is an advanced exterior penalty function approach which uses very little central 
memory and very little computational time within the algorithm.  The price paid for the 
large scale capability is that this method requires 3-5 times as many function and gradient 
evaluations to converge.  An ad-hoc method for solving discrete optimization problems is 
included which reliably obtains a reasonable discrete solution.  Examples are presented to 
demonstrate the method.  

Nomenclature 
F(X) = objective function 
gj(X) = j-th constraint function 
m = total number of constraints 
n = number of design variables 
P(X) = penalty to drive design variables to a discrete value 
q = iteration number in unconstrained sub-problem 

p
jq  = individual penalty parameter 

rp = global penalty parameter 
R = penalty parameter for discrete variable optimization 
Sq = search direction at iteration q 
X = vector of design variables 
Xi = i-th design variable 

L
iX  = lower bound on the i-th design variable 
U
iX  = upper bound on the i-th design variable 

Φ = pseudo-objective function 
β = conjugate direction multiplier 
∇  = gradient operator 
 

I. Introduction 
ith the increased use of optimization,  the size of the problems being solved has grown rapidly.  In structural 
optimization, problems with tens of thousands of design variables and millions of constraints are now being 

solved.  For multidiscipline (MDO) problems, the number of variables and constraints can be even larger.  In this 
case, in the past, decomposition methods were developed due to our inability to handle such large problems.   

Non gradient methods, such as genetic algorithms, have been found to be both inefficient and unreliable for more 
than a few variables.  Common gradient based methods, such as Sequential Quadratic Programming, can 
theoretically handle large problems but two issues quickly arise.  First, these methods require solution of a large and 
often time consuming sub-optimization task to find the search direction and, second, they require storage of large 
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amounts of information (both gradients and Lagrangian approximation information).  This second issue may be 
handled using spill logic, but this can also be complicated and inefficient.    

There is clearly a need for methods which will solver very large problems with limited central memory and 
which avoid large sub-optimization tasks.  Such a method will be presented here.  While it was developed primarily 
for structural optimization, it is equally useful for MDO tasks where gradient information is available.  In either 
case, it is desirable to have high quality approximations since this algorithm requires more function and gradient 
evaluations than before.   

When designing composite structures or piping systems, for example, the design variables must be discrete or 
integer.  Genetic algorithms and branch and bound methods can be used here but are inefficient for problems of 
more than a few variables.  The algorithm described here includes an ad-hoc method for solving large discrete or 
mixed continuous-discrete variable problems.  This method does not insure a theoretical optimum but does produce 
a reasonable discrete solution efficiently. 

II. Historical Background 
 
Since the introduction of numerical optimization to structural design by Schmit in 19601, the size of problems 

solved by these methods has grown exponentially as shown in Figure 1. 
In recent years, the focus in gradient based algorithm development has been on Sequential Quadratic 

Programming and similar methods which possess very strong convergence characteristics.  However, as problem 
size has grown, these methods have been found to have significant limits.  First, they require large memory to store 
necessary gradient information and second, they require a sub-optimization task to find a search direction.  The 
memory requirement may be alleviated by out of memory storage operations but this is complicated and inefficient.  
The direction finding sub-problem can require significant computational effort which again leads to inefficiencies.  
In general, these modern methods can efficiently 
solve large problems with only a few active 
constraints or small problems with many 
constraints (because only a few will be critical).  
The difficulty arises when we have many design 
variables and many active constraints. 

In the 1960’s Sequential Unconstrained 
Minimization Techniques (SUMT) were popular2 
but, as noted above, where replaces by more 
direct methods.  Recently, there has been renewed 
interest in SUMT, focused primarily on interior 
point methods3. 

In developing the present capability numerous 
SUMT methods were investigated leading to 
adoption of a new exterior penalty function 
approach4, implemented in the BIGDOT 
optimization software5.  This method will be 
reviewed here and recent enhancements will be 
identified.  General enhancements have been 
made, allowing for solution of much larger 
problems.  Also, a discrete variable algorithm has 
been implemented for solution of discrete or 
mixed continuous-discrete problems.  

III. The BIGDOT Algorithm 
The method developed here begins by solving the continuous variable problem and then finding a “reasonable” 

discrete solution.  Therefore, it is required that the problem be solvable as a continuous problem.  This is consistent 
with the assumptions of traditional branch and bound methods.  

A. Continuous Variable Optimization 
The basic approach used here is to convert the original constrained optimization problem to a sequence of 

unconstrained problems of the form; 
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Figure 1. Growth in Optimization Problem Size
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Subject to; 
 

 1,L U
i i iX X X i n≤ ≤ =  (2) 

 
where X is the vector of design variables, F(X) is the objective function and gj(X) are the constraints. 

The subscript/superscript, p is the outer loop counter which we will call the cycle number. The penalty 
parameter, rp, is initially set to a small value and then increased after each design cycle. The only difference between 
this formulation and the traditional exterior penalty function is the addition of individual penalty parameters, p

jq , on 
each constraint. These multipliers are similar to the Lagrange multipliers used in the Augmented Lagrange 
Multiplier Method6, but are calculated by a proprietary formula. Equation 2 imposes limits on the design variables 
(side constraints) which are handled directly. 

If equality constraints are considered, they can just be converted to two equal and opposite inequality constraints. 
The unconstrained penalized function defined by Eq. 1 is solved by the Fletcher-Reeves conjugate direction 

method7, which requires virtually no memory. 
The gradient of Φ(X) is required during the optimization process. 

 
1

( ) ( ) 2 { [0, ( ) ( )]}
m

p
p j j j

j

X F X r q MAX g X g X
=

∇Φ = ∇ + ∇∑  (3) 

Here, the choice of the exterior penalty function becomes apparent because only gradients of violated constraints 
are required. Furthermore, it is not necessary to store all gradients at once. Noting that Eq. 3 is a simple addition of 
gradient vectors so, in the limit, we can calculate only one gradient (objective or constraint) at a time. 

As an indication of computer memory required by various methods, the proposed method is compared with the 
three methods used by the DOT program8. This is presented in Table 1, where MMFD is the Modified Method of 
Feasible Directions, SLP is the Sequential Linear Programming Method and SQP is the Sequential Quadratic 
Programming Method.  

The memory requirements for the DOT methods are the 
number of words for storage of all internal arrays. For the 
BIGDOT method, the two memory requirements are the 
minimum, where only 1 gradient vector is calculated at a time, 
and the maximum, were all possible gradients are stored in 
memory. The number of constraints equals the number of 
design variables. 

As can be seen, as the problem size grows, storage 
requirements for the earlier methods grows exponentially. 
However, for the present method, storage is much less and the 
requirement grows only linearly with problem size. If there are 
many more constraints than design variables, the requested 
storage for the earlier methods grows even more rapidly. 

As noted above, the unconstrained minimization sub-problem is solved by the Fletcher-Reeves algorithm. Here, 
at iteration q, the search direction is found as; 

 
If q = 1 
 

 
Table 1.  Storage Requirements 
 

Number of Design Variables  
Method 100 1,000 10,000 
MMFD 53,000 5X106 5X108 

SLP 113,000 11X106 11X108 
SQP 119,000 11.5X106 12X108 

BIGDOT 1,400 
to 

11,000 

14,000 
to 

10X105 

140,000 
to 

10X107 
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 0( )qS X= −∇Φ  (4) 

 
If q > 1 
 

 1 1( )q q qS X Sβ− −= −∇Φ +  (5) 
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Once the search direction is calculated, the one-dimensional search is calculated by polynomial interpolation. 
It can be argued that more modern quasi-Newton methods are a better choice for solving the sub-problem. 

However, these methods require much more storage. Also, computational experience has shown that the Fletcher-
Reeves algorithm is comparable in efficiency and reliability if carefully programmed. 

During the unconstrained minimization sub-problem, almost no effort is required to calculate the search 
direction, so the computational time spent in the optimizer itself is negligible. The cost of optimization is almost 
completely the cost of analysis and gradient computations. Thus, it is desirable (but not essential) that high quality 
approximations are available, as is the case in modern structural optimization. 

Version 1 of BIGDOT required that gradient information be provided directly and, if only a few gradients could 
be stored in memory, repeated returns would be made to the user to calculated the needed set.  Version 2 allows the 
user to provide gradients in compacted form via a binary file.  If convenient, more than the requested number of 
gradients can be provided.  This has the advantage that, for strictly linear problems, gradients need only be 
calculated and stored once.  Also, for problems with a nonlinear objective function but linear constraints, the 
objective function gradient is calculated as needed but the constraint gradients need to be calculated only once. 

B. Discrete Variable Optimization 
 
Traditional branch and bound methods or genetic algorithms become hopelessly inefficient when used for 

optimization problems of more than a few variables (say 10 or 20).   For large scale optimization, no “theoretically 
correct” method is available for nonlinear constrained optimization problems.  Therefore, an ad-hoc method is used 
here with the goal of finding a “reasonable” discrete solution which is feasible.   

One approach to this is offered in ref. 9, where a sin or cosine shaped penalty function was created to drive the 
design to a nearby discrete solution.  Unlike ref. 9, the sin shape was found here to be most reliable.  Also, it has 
been modified slightly from the reference to be of the form; 

 

 
1

1 0.25( 3 )( ) 1 sin 2
2

L Un
i i i

U L
i i i

X X XP X R
X X

π
=

  − + = =  −   
∑  (7) 

 
where L

iX is the next lower discrete value and U
iX is the next higher discrete value. 

This, by its nature, creates a multitude of relative minima.  Therefore, if these penalties are imposed from the 
beginning, there is a high probability of finding a solution that is not near the true optimum.  Thus, it is desirable to 
first solve the continuous variable problem to provide a good starting point.  Even doing this, the approach is very 
sensitive to penalty parameter values and may produce either a non-discrete solution or an infeasible one. 
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During this phase of the optimization, it is important to include the original penalty function as well to maintain 
feasibility with respect to the general constraints. 

Equation 7 attempts to drive the variables to a discrete value. However, this penalty function creates numerous 
relative minima and has little assurance of insuring feasibility with respect to the original constraints or of actually 
driving all discrete variables to a discrete value. Therefore, after several cycles, progress is evaluated. If all discrete 
variables are not driven to an allowed value, we ask how to change each variable such that it will move to a discrete 
value with minimum effect on the objective function and at the same time maintaining feasibility with respect to the 
original constraints. 

To achieve this, we first get the gradient of the objective function and the penalty term of the pseudo-objective 
function, with the penalty multipliers set to unity (get the sum of violated constraint gradients).  We then seek to 
drive the solution to a discrete value with minimum increase in the objective function while remaining feasible with 
respect to the constraints. 

The general algorithm for this is; 
1. Including only discrete variables, and bypassing variables that are already at a discrete value, search for  

 
/
/

i

i

P X
F X

∂ ∂
∂ ∂

 (8) 

2. Calculate the changes in Xi that will move Xi to its next larger and smaller discrete value. 
3. For each such δXi estimate the maximum constraint value based on a linear approximation. 
4. Move Xi to the discrete value that maintains feasibility. 
5. Repeat from step 1 until all discrete variables are at a discrete value. 

 
This algorithm drives the design variables to a discrete value while still including the original constraints via the 

original SUMT algorithm. This has the limitation that variables can move only one discrete value up or down from 
the continuous solution during each cycle.  

The final algorithm finds a feasible, discrete solution efficiently and seldom fails. However, it must be 
remembered that this is not guaranteed to be a theoretical optimum, only a good discrete solution. 

This algorithm has the advantage that it is a straightforward addition to the continuous variable algorithm and 
that it requires very little memory and computational effort. 

 

IV. Examples 
Examples are presented here to demonstrate the algorithm described above.   

A. Cantilevered Beam 
The cantilevered beam shown in Figure 2 is designed for 

minimum material volume.  Here, five segments are shown.  
In general, N segments will be considered.  The design 
variables are the width, bi, and height, hi of each of the N 
segments.  The beam is subject to stress limits, σ , at the left 
end of each segment and the geometric requirement that the 
height of any segment does not exceed twenty times the 
width.  There are a total of 2N design variables and 2N 
constraints, as well as lower bounds on the variables.  
Therefore, at the continuous optimum, it is expected that the 
design will be fully constrained (as many active constraints 
as design variables) because the structure is statically 
determinate.  If the beam was allowed to be completely 
continuous without lower bounds on the design variables, the 
theoretical optimum is 53,714.  
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Figure 2.  Cantilevered Beam 
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The design task is now defined as; 
 
Minimize 

 
1

N

i i i
i

V b h l
=

=∑  (9) 

Subject to; 

 1 0 1,i i Nσ
σ

− ≤ =  (10) 

 20 0 1,i ih b i N− ≤ =  (11) 

 1.0 1,ib i N≥ =  (12) 

 5.0 1,ih i N≥ =  (13) 

Here, N=25000, 50000, 
125000 and 250000 was used to 
create problems of 50000, 
100000, 250000 and 500000 
design variables, respectively. 

For the discrete solution, 
each variable was chosen from 
sets of discrete values in 
increments of 0.1. 

The results are presented in 
Table 2. The information in 
parentheses (../..) are the number of function evaluations over the number of gradient evaluations.  The numbers in 
brackets [../..] are the number of active constraints over the number of active side constraints at the optimum, where 
a constraint is considered active if its value is greater than -0.05 and no more positive than 0.003.  Except for the 
500,000 variable problem, all constraints were satisfied at the optimum.  The 500,000 variable problem failed to 
achieve a feasible discrete solution, even though it generated 500,000 discrete values. This problem ended with 79 
violated constraints having a maximum violation of just over one percent. 

In each case, the optimum achieved was about the same and the discrete solution was only slightly larger, 
indicating a “good” discrete solution.  It is particularly noteworthy that the number of function and gradient 
evaluations is nearly constant.  This suggests that the algorithm is very scalable regardless of problem size. 

B. Car Body Reinforcement 
The BIGDOT optimizer has been added to the GENESIS structural optimization program10 to perform large 

scale structural optimization.  To date, topology optimization problems in excess of 2,000,000 variables and member 
sizing problems in excess of 450,000 variables have been solved. 

Figure 3 shows a car body model which we wish to reinforce to increase the bending and/or torsion frequency.  
The approach used here was to allow every element in the model was optimized for thickness (with a lower bound 
of the original design) with the constraint that only a specified fraction of the material may be used.  Here, 34,560 

Table 2.  Optimization Results 
 

Number of Design Variables  
 50,000 100,000 250,000 500,000 

Continuous 
Optimum 

53,744 
(243/46) 

[49,979/46] 

53,720 
(209/38) 

[99,927/150] 

53,755 
(262/49) 

[249,919/211] 

53,730 
(266/50) 

[499,700/1732] 
Discrete 
Optimum 

54,864 
(92/38) 

54,848 
(96/25) 

54,887 
(143/24) 

54,821 
Infeasible 

gmax = 0.011 
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Initial Design Final Design
 
Figure 14.  Skeletal Support 

 
Figure 3.  Car Body Reinforcement 

sizing variables were used.  While somewhat difficult to see in Figure 3 (unless viewed in color), reinforcement was 
added in the areas of the firewall, rocker panels and rear fender areas. 

Table 3 gives the increase in bending or torsion frequency for different values of added mass. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. Topology Optimization of a Support 
Figure 4 is a topology optimization 

example where just over one million design 
variables were used.  This structure was 
optimized to minimize strain energy under 
the applied load. 

 
 
 
 
 
 

V. Summary 
An algorithm has been developed for solving very large optimization tasks, which uses limited central memory 

and which avoids solution of a large sub-optimization task. The memory requirements grow only linearly with 
problem size. The algorithm is based on a modern exterior penalty function method which exhibits approximately 
constant efficiency, independent of problem size.  Once a continuous optimum has been achieved, a discrete solution 
is found using an ad-hoc algorithm which drives the optimum to a feasible discrete solution with minimal increase in 
the objective function.  Experience has shown that the optimization problem size is no longer limited by the 
optimizer, but instead by the ability of the analysis and sensitivity software to provide the needed information. 
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Table 3.  Frequency Increases 
 

Increased Frequency (Hz) Added
Mass 
(Kg) 

Maximize First 
Torsion 

Frequency 

Maximize First 
Bending 

Frequency 
2.64 4.81 6.42 
7.32 7.56 9.89 

15.06 9.66 112.15 



 
American Institute of Aeronautics and Astronautics 

 

8

7Fletcher, R. and C. M. Reeves: Function Minimization by Conjugate Gradients, Br. Computer J., vol. 7, no. 2, pp. 149-154, 
1964.  

8DOT User’s Manual, Version 5.0: Vanderplaats Research & Development, Inc., Colorado Springs, CO, 1999. 
9Shin, D. K., Gurdal, Z. and Griffin, O. H., Jr., “A Penalty Approach for Nonlinear Optimization with Discrete Design 

Variables,” Eng. Opt., Vol. 16, pp. 29-42, 1990. 
10GENESIS User’s Manual, Version 7.5: Vanderplaats Research & Development, Inc., Colorado Springs, CO, 2004. 
 
 
 


