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ABSTRACT 

 
This work discusses application of an automated multi-
disciplinary design optimization (MDO) system to 
noise control in turbomachinery.  Numerous issues in 
the automated optimization procedure, such as those 
related to proper geometry parameterization, algorithms 
selection, and transparent interconnections between 
different elements of the optimization process are 
discussed. In benchmark test studies, the work 
examines a problem of blade shape optimization to 
minimize fan (rotor) noise, the dominant source of 
sound radiation both in high-speed fan applications 
(such as high-bypass-ratio turbofans, propellers of 
turboprop and IC engines in general aviation, and 
helicopter rotors) and low-speed ones (including 
applications in automotive, computer, air-conditioning 
and other industries). For low-speed fan applications, 
an approach is developed based on using an 
unstructured RANS solver coupled with an automated 
mesh generator. In the high-speed open-rotor project, 
the automated optimal blade design process employs a 
response analysis module developed on the basis of 
panel-based aerodynamic code integrated with an 
integral acoustic solver. Success of various 
optimization algorithms (including gradient-based and 
evolutionary) in finding global minima of the objective 
function for a noise metric in both unconstrained and 
constrained optimization processes is examined.  
 

INTRODUCTION 
 
Efforts to merge MDO and CFD technologies have 
become a recent trend in the conceptual aircraft design: 
as was originally stated in Ref. [1], with the availability 
of high performance computing platforms and robust 
numerical methods to simulate fluid flows, it is possible 
____________________________________ 
 
 
 

 to shift attention from CFD development to automated 
design procedures which combine CFD with 
optimization techniques to determine optimum 
aerodynamic designs. Over the past years, major studies 
were devoted to the classical benchmark of an optimal 
aerodynamic design for a 2D airfoil, where the main 
focus was on proper geometry parameterization and 
selection of an efficient optimization algorithm. For 
instance, Fanjoy and Crossley [2] developed a method 
to optimize airfoil designs by using 21 design variables 
representing the control points of a B-spline. This 
appears to be sufficient to reproduce nearly any 
arbitrary shape, but introduces geometric waves 
between control points translated to “wavy” velocity 
distribution in the analysis. A similar approach with 10 
control points was employed by Pulliam et al. [3] in 
their comparison of genetic and adjoint methods for 
viscous airfoil optimization. Alternatives to the direct-
design approach, including inverse methods to 
parameterize the geometry by matching it to the optimal 
flowfield conditions, were also developed [4]. For 
rotorcraft airfoils, a study on aeroacoustic optimization 
using a genetic algorithm was conducted in Ref. [5]. 
Using simplifying assumptions for low-order 
aeroacoustic analysis without structural constraints, a 
set of rotor airfoil shapes was generated representing a 
compromise between aerodynamic efficiency and 
minimum noise. Among the generated shapes, airfoils 
with waves on the upper and lower surfaces were 
predicted to produce reduction in the overall sound-
pressure level. For 3D geometries, several recent works 
(e.g., Refs. [6-7]) addressed optimal wing and aircraft 
configurations, some using a multiobjective 
optimization strategy, and increasingly relying on 
evolutionary algorithms. Various methods to 
parameterize 3D geometries were analyzed, typically 
resulting in a large number of design variables to 
adequately represent the optimized shapes in terms of 
Bezier surfaces or B-splines. In one such study [8], a 
fuselage of a supersonic transport was parameterized in 
terms of 37 Bezier polygons, resulting, for an integrated 
wing-fuselage configuration, in 131 design variables. 
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Various works also discussed automated grid 
generation procedures.     
 
Increasingly, the multiobjective optimization studies 
have been including a noise metric as a component of 
their objective functions. This is particularly the case 
for a supersonic transport design where optimal shapes 
where developed to lower the sonic boom strength (e.g., 
Ref. [8]).  In general, noise as a factor may be 
accounted at multiple levels in aircraft systems design. 
In a preliminary design for innovative complete aircraft 
configurations, the approach may involve first 
identifying the dominant sources of noise radiation that, 
in the aircraft MDO study, could be included in the cost 
function in the form of a noise metric [9, 10]. Such 
optimization problems, once properly posed, may lead 
to very unusual configurations provided the noise 
metric represents a highly weighted cost function 
component. For instance, a conceptual search in Ref. 
[11] for a  “functionally-silent” aircraft configuration 
(with up to 30 dB overall noise reduction) has shown 
promise of a blended-wing-body concept with 
innovations including ultra-high bypass ratio turbofan 
engines and distributed propulsion system. One 
common feature of such studies is that they illustrate 
the need to develop a comprehensive noise assessment 
framework in order to address a problem of 
multiobjective aeroacoustic optimization with sufficient 
confidence.    
 
The design of highly efficient and quiet turbomachinery 
and generally propulsion system components represents 
a most difficult and challenging task in many industrial 
applications ranging from aeropropulsion (e.g., turbofan 
and turboprop engines) to automotive and air-
conditioning industries (e.g., cooling fans). The 
challenge is presented by the variety of flow and 
geometric parameters affecting the aerodynamic and 
acoustic performance, as well as the complexity of 
multi-scale unsteady flow-structure interaction 
phenomena leading to numerous noise-producing 
mechanisms and difficulty in their description and 
prediction. The accuracy and numerical efficiency of 
noise prediction techniques are critical factors in 
developing approaches to aeroacoustic geometry 
optimization studies. For that reason, very few 
examples of such studies exist (one example from Ref. 
[5] is mentioned above).  
 
The current work addresses several critical issues 
related to the optimal aeroacoustic shape design in 
turbomachinery by examining them in the context of 
the automated, industry-like MDO environment, 
developed and distributed on a parallel high-

performance computer cluster. In the following 
discussion, the main elements of such system are first 
examined to illustrate its various capabilities, 
particularly required to ensure a fully automated and 
efficient design optimization process. Next, two test 
studies related to optimal shape design of a rotor blade 
for low- and high-speed fan applications are discussed. 
In the first study, an attempt is made to employ a 
commercial CFD software coupled with an automated 
unstructured mesh generator. A procedure developed 
for proper parameterization of the blade geometry for 
optimal shape design is discussed, and could be found 
particularly useful in a variety of industrial 
turbomachinery applications that deal primarily with 
commercial CFD packages. In the second study, we 
employ aeroacoustic prediction methods to examine an 
approach to aeroacoustic shape optimization of a blade 
designed for high-speed rotor applications.  
 
 

COMPONENTS OF AUTOMATED MDO 
ENVIRONMENT 

 
The main elements of any automated MDO 
environment can be roughly subdivided into three 
major categories [12]:  (i) CAD Modeling; (ii) Grid 
Generation; (iii) Design and Optimization Tools 
(including response sensitivity analysis). Each of these 
categories has been a focus of intensive research 
activities in recent years, aimed, in particular, at 
establishing transparent links for integrating all 
components in one automated, robust design and 
optimization process. In general, the automated design 
systems must provide for the following capabilities 
[12]: (i) Use CAD for geometry creation; (ii) Generate 
grids automatically (black-box grid generation system); 
(iii) Use a common geometry representation for all 
disciplines involved in optimization process; (iv) 
Calculate analytical grid and geometry sensitivities; (v) 
Transfer data among disciplines consistently; (vi) 
Operate in an integrated system; (vii) Parameterize 
discipline models consistently. Below, we examine 
selected aspects of these features as they are 
implemented in our integrated system and further in test 
problems.  
 
The essential elements of our industry-like, distributed, 
automated design optimization system include three 
software components developed by VR&D, Inc.: 
VisualDOC, GENESIS, and DOT [13]. The primary 
component in most design optimization procedures, 
VisualDOC, is a graphics-based, general-purpose 
design optimization software system designed to 
interface easily to third-party analysis programs using 
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its dedicated VisualScript interface. GENESIS is a fully 
integrated FEA and design optimization package 
providing design options of shape, sizing and topology 
optimization. Finally, Design Optimization Tools 
(DOT) is a library of software modules that is designed 
to help solve a variety of nonlinear constrained or 
unconstrained optimization problems (used in many 
existing design optimization products, such as 
GENESIS, VisualDOC, MSC/NASTRAN, ADAMS, 
FEM5, POLYFEM, DAKOTA). VisualDOC’s structure 
includes a graphical user interface (GUI), a database, 
and several functional modules. The central part of the 
system is the object-rational, multi-user, platform-
independent database acting as a container for all 
design information. GUI allows launching design tasks, 
performing real-time monitoring of the optimization 
process, and post-processing results for various forms 
of design variables that may be in continuous, integer, 
discrete, or any combination forms.  
 
Optimization Modules 
The backbone of the optimization system is its 
functional modules performing the actual optimization, 
design study, etc. The menu includes the Gradient-
Based Optimization (GBO), Design of Experiments 
(DOE), Response Surface Optimization (RSO), and 
Evolutionary Optimization (EO) modules. 
 
GBO tools include extensively tested DOT software 
algorithms, such as sequential quadratic programming, 
modified method of feasible directions, sequential 
linear programming, Fletcher-Reeves, Broydon-
Fletcher-Goldfarb-Shanno, and sequential 
unconstrained minimization technique methods, for 
various constrained and unconstrained multiobjective 
optimization problems. In the optimization process, 
VisualDOC calculates gradients of response-supplied 
cost functions and constraints using finite differences, 
but provides an option to employ user-supplied 
gradients.   
 
Both DOE and RSO methodologies are used to 
establish empirical relationships between design 
variables and responses, which is a highly needed 
function in physical experiments and nonlinear 
analyses. They are also employed to filter out numerical 
noise from the analysis. According to Ref. [13], RSO 
has established itself as the most efficient method to use 
in optimization problems with relatively few (up to 
about 20) design variables, when the computational cost 
of performing a single analysis is high (a general trend 
in the growth of the number of terms in polynomial 
response surface models in shown in Figure 1). DOE 
works on the statistics of the design space distribution 

thus helping to identify the design variables that have 
the most influence on the responses, and construct 
response surface approximations. A set of employed 
standard statistical DOE tools include full and 
fractional factorial, composite, simplex, Koshal, Box-
Behnken, random, Latin Hypercube, Taguchi 
orthogonal arrays, D-optimal, and several other designs.  
 

 

Figure 1: Influence of response surface models on 
number of design variables (courtesy VR&D, Inc.). 

 
Finally, the Evolutional Optimization module includes 
Genetic and Particle Swarm Optimization algorithms, 
which benefits include better chances of finding global 
optima while not requiring gradient information, and 
good handling of numerical noise.  
 
From the standpoint of the current test studies, one of 
the most important benefits of the system is its ability to 
efficiently interact with the third-party engineering 
analysis programs such as CFD and structural analysis 
tools.  Such interaction is facilitated through a menu of 
interfaces, including ASCII-based Simple Text File 
Interface, multi-level Enhanced Text File Interface 
(VisualScript), and various specialized interfaces to 
MATLAB, Excel, and other analysis programs. Finally, 
another important VisualDOC’s feature, for application 
to complex optimization problems, is the system’s 
parallel computing capability. All the MDO functional 
modules, along with vectorized response analysis 
codes, have the ability to run in parallel on designated 
computer nodes using MPI message passing, thus 
creating a truly distributed environment. Although this 
feature has not been employed in the current benchmark 
tests, future studies will investigate effective use of the 
available networked cluster resources. 
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CASE STUDY I: OPTIMAL AERODYNAMIC 
DESIGN OF LOW-SPEED FAN BLADE 

 
The primary purpose of this project was to test the 
performance of the automated, distributed MDO/CFD 
environment designed for its future use in industrial 
turbomachinery MDO applications.  In this study, we 
considered the task of optimal blade design to 
maximize the total efficiency of an axial fan with 
uniform upstream flow.  Another goal of this project 
was to examine approaches to the efficient 
parameterization of the blade geometry that would be 
most appropriate for the robust automated MDO 
process. As mentioned above, contrary to the airfoil 
design studies, no guidelines have yet been established 
for the efficient parameterization of the blade geometry.  
 
As a response analysis tool, we selected BladeGenPlus 
software component from CFX TurboPlatinum Package 
by ANSYS, Inc., since the latter is one of the primary 
commercial CFD analysis tools used in industrial 
turbomachinery design applications. BladeGenPlus is 
an integrated blade design software (BladeGen) coupled 
with blade passage unstructured RANS solver. The 
software was integrated with VisualDOC in the 
automated optimization process governed by 
VisualScript.  
 
In the optimization process, the fan operating 
conditions were set either as specified parameters, or 
constraints in the optimization cycle, and included: (i) 
volumetric flow rate, (ii) range of safe (unstalled) fan 
operation, and (iii) fan static pressure rise. Fan diameter 
was usually prescribed as a geometric constraint. No 
structural constraints were imposed in this test study. 
 
The initial task involved selection of proper parameters 
that completely and efficiently defined the fan blade 
geometry (this task is discussed in detail below). These 
parameters were then passed to the optimization 
module that generated another set of parameters 
describing a new, prospective blade design.  At the next 
stages, the new blade geometry was generated in 
BladeGen, followed by automated unstructured mesh 
generation, CFD analysis, and transfer of results to the 
optimization module. Figure 2 illustrates a general 
flowchart of the optimization process. In summary, the 
optimization task can be roughly subdivided into four 
major segments: (i) Generation of blade geometry using 
BladeGen software based on current input parameters; 
(ii) CFD analysis performed on a new blade design 
using BladeGenPlus; (iii) Passing results of CFD 
analysis to VisualDoc optimizer; (iv) Generation of a 

new set of design parameters based on an iterative step 
of the selected optimization algorithm.  
 

 
Figure 2: General MDO flowchart for Case Study I.  

 
In what follows, we briefly describe some of the 
essential elements of this process and their functions. 
 
Parameterization of Blade Geometry   
A critical step in the automated design optimization 
procedure was the selection of an efficient way to 
parametrically describe the blade geometry.  
 

 
Figure 3: Definition of blade geometry in BladeGen.  

In BladeGen, the blade model is defined by data points 
distributed over a number of user-specified constant-
radius layers, spanning from 0% at the hub to 100% at 
the shroud. The geometrical properties, including blade 
angles and thickness distributions, are then specified at 
each spanwise layer, and interpolations between layers 
are employed to generate the three dimensional 
geometry, as shown in Figure 3. 
 
The primary control parameters used in the blade 
geometry parameterization, include distributions of 
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blade angles θ and β. As evident from Figure 4, the two 
angles are interrelated, and thus only θ−distribution is 
used as a design property, while β-distribution is 
specified based on variation of θ. Note that according to 
the angles definition, the blade twist is determined by 
the spanwise β-distribution, while the blade sweep is 
prescribed by the spanwise θ-distribution. 
 
 

 
Figure 4: θ and β blade angle definitions in BladeGen. 

 
In the current approach, the initial blade design is 
parameterized using Bezier control points (connected 
by dotted segments in Figure 5) to define the chordwise 
θ-distribution at each span layer. The use of Bezier 
points ensures a smooth θ-distribution, free of 
discontinuities that could yield geometrically unfeasible 
blades. For example, in order to define θ−distribution at 
the blade hub (span layer #1), the coordinates of 4 
Bezier control points (xθ1,0, yθ1,0), (xθ1,1, yθ1,1), (xθ1,2, 
yθ1,2), (xθ1,3, yθ1,3) must be specified.  The control 
Bezier points are used to generate both θ and thickness 
spanwise distributions, and employed as the primary 
geometrical design properties. The control design 
parameters are thus defined as (x,y) pairs corresponding 
to 4 Bezier points that generate the blade shape 
distribution at each span layer, as illustrated in Figure 5.  
 
In the test study, the span layers were evenly distributed 
from hub to shroud with a total of 5 span layers, and 
design variables were provided for each span layer for 
effective control of the blade geometry. 
 
While the parameterization using Bezier curves 
provides smooth distribution of blade  geometry at each 

 
Figure 5: Chordwise blade angle variation. 

span layer, the same quality has to be maintained for 
distribution of parameters responsible for spanwise 
variation of the geometry. To this end, the spanwise 
parameterization approach employed 3rd-order 
polynomials to define the radial distribution of the 
Bezier control points, resulting in a set of 4 polynomial 
coefficients as design control variables. For example, 
θ - distribution at the blade leading edge is defined by 
the (xθn,m;yθn,m) pairs with 1≤n≤5 and m=0, where n 
designates the span layers (n=1 is at the hub and n=5 is 
at the shroud), and m=0 corresponds to the leading 
edge. In the BladeGen notation, xθn=1..5,0 = 0% at the 
blade leading edge (for all span layers), and 
xθn=1..5,3=100% at the blade trailing edge. Note that in 
the adopted parameterization scheme, the 3rd degree 
polynomials were only applied to prescribe the 
spanwise variation of yθn,m=0..3 and xθn,m=1 Bezier 
components. Figure 6 shows a sample radial 
polynomial distribution for yθn,m component (the 
abscissa corresponds to the radial coordinate). The 
coefficients of the 3rd order polynomials are thus 
selected as additional design control variables 
employed in the optimization of the blade geometry. 
For a total of 5 polynomial splines with 4 coefficients, 
20 design variables are needed for proper 
parameterization of the blade geometry. 
 
An additional constraint in the parameterization 
approach relates to one of the Bezier control points, 
xθn,m=2. A careful analysis of the Bezier point 
specifications in Figure 5 suggests that the x-coordinate 
of the third control point (xθn,m=2) must be placed after 
the x-coordinate of the second control point (xθn,m=1)  in 



  
           American Institute of Aeronautics and Astronautics 

6

order to produce a geometrically feasible blade. Thus, a 
“distance factor” dn=1..5 was introduced in order to 
deduce xθn,m=2 Bezier components in terms of xθn,m=1 
and xθn,m=3, using the following relationship: 
 

, 2 , 1 , 3 , 1( ) 5n m n m n m n m nx x x x dθ θ θ θ= = = == + − + , 
 
with 0≤dn ≤0.95. Thus, 5 additional design variables 
(one “distance factor” for each span layer) are needed 
for the complete parameterization of the 3-D blade 
geometry for θ−distribution. In addition, as many as 10 
Bezier components xθn=1..5,0 and xθn=1..5,3 could be added 
to the pool of possible design variables for additional 
control (but were held constant in the current test runs), 
bringing the total number of potential design control 
variables for parameterization of θ-distribution to 35. 
Future work will investigate effects from various radial 
distributions including power, exponential and 
logarithmic laws that might provide a better 
approximation requiring fewer coefficients in 
describing the geometrical relationships, thus reducing 
the number of parameters required to describe the blade 
geometry. 
 
The described parameterization procedure for 
θ−distribution can be also applied to specify the blade 
thickness distribution, thus doubling the number of 
possible design variables. Thickness parameters were 
held constant in the current shape optimization studies, 
but their variation is a potential subject of future 
research. 

θ Bezier CP Radial Polynomial Splines
(s - % span)

yθn,2 = -103.28s3 + 71.926s2 - 2.6332s + 25.08

yθn,3 = 27.159s3 - 92.458s2 + 51.687s + 24.082

yθn,1 = -97.665s3 + 83.3s2 - 20.425s + 21.402

yθn,0 = 15.331s3 - 59.462s2 + 27.131s - 2.9673
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Figure 6: Bezier spanwise polynomial splines. 
 

In addition to geometrical parameters, the number of 
design variables selected for passing to the optimization 
module included the number of fan blades and 
rotational speed, adding to a total of 72 possible 
optimization variables. Also included in the list of 
possible design variables were several constraint 
parameters used in various scripts to validate the blade 
geometry, as well as flags that allow the user to vary the 
parameterization scheme. A total of 118 potential 
design parameters were passed to the optimization 
module. 
 
 
Automated Response Analysis Procedure 
It is essential to maintain the response analysis stage as 
a completely automated, non-interactive segment of the 
optimization process. To this end, a set of batch 
executable utilities was implemented to accomplish the 
goal. In particular, the following BladeGenPlus utilities 
were employed:  
• BladeBatch converted the optimizer-generated, 

ASCII-based blade model into a BladeGen design 
format;  

• BgBatch applied new operating parameters such as 
the fan rotational speed and upstream flow 
conditions to the new BladeGen model; 

• BgGrid generated unstructured blade-passage mesh 
for the new BladeGen model (Figure 7 illustrates a 
sample mesh for a single blade passage);  

• BgSolve performed a CFD analysis of the blade 
passage and stored results in a specified file; 

• BgExtract extracted computational results from the 
BgSolve output file and stored them in a specified 
file.  

 
The need for completely automated optimization and 
response analysis procedures implies a considerable 
level of robustness to be built in the MDO environment, 
allowing it to handle extreme design cases. To this end, 
MATLAB scripts were developed to handle the 
following issues identified as critical to the robustness 
of the MDO methodology: 
• Invalidity of extremely twisted, swept or distorted 

blade designs (as illustrated in Figure 8) is 
communicated to the optimization module through 
Geometry Pass/Fail parameter;  

• Information on blade designs for which mesh could 
not be successfully generated is passed to the 
optimization module through Grid Pass/Fail 
parameter; 

• Invalidity of CFD results stored in the response 
analysis file is communicated to the optimization 
module through CFD Pass/Fail parameter. 



  
           American Institute of Aeronautics and Astronautics 

7

 
 

Figure 7: Unstructured blade passage mesh from 
BladeGenPlus. 

 

 

 
Figure 9: Detail flowchart of the design optimization 

process for Case Study I. 
 
Optimization Algorithms and Results 
In the optimization test runs, the design control 
parameters describing the blade geometry included 4 
pairs of Bezier coefficients (xn=1..5,0, yn=1..5,0), (xn=1..5,1, 
yn=1..5,1), (xn=1..5,2, yn=1..5,2), (xn=1..5,3, yn=1..5,3) for θ and 
thickness distributions at 5 span layers, as well as the 
number of blades and fan rotational speed (RPM). Four 
original blade designs were used as “base” models (in 
Figure 10), with the primary purpose to validate the 
global convergence of the optimization process by 
starting from four distinct points of the design space. 
The concurrence between results of the optimization 
runs could serve as a measure of the “global nature” of 
the obtained optimal solution.  Parameters of the initial 
blade models are shown in Table 1. 

Figure 8: Highly swept blade design. 

Note that the availability of the Pass/Fail parameter in 
VisualDOC, complemented by the software’s ability to 
easily interface with MATLAB scripts, allows for a 
considerable robustness of the automated MDO 
process, as the latter is not immediately terminated in 
the event of problems associated with invalid blade 
designs, unsuccessful mesh generation, or unsuccessful 
CFD analysis (in all cases, the optimization process 
automatically recovers and continues).  
 
The flowchart in Figure 9 summarizes details of 
implementation of various stages of the automated 
MDO/CFD procedure implemented in this case study. 

 
 

 Model1 Model2  Model3 Model4 
RPM 1140 1170 1140 1140 

Blades 9 9 9 3 
Hub/Tip  0.40 0.40 0.45 0.40 

 
Table 1: Parameters of the initial blade models. 

 
Several optimization algorithms were tested within a 
menu of VisualDOC’s modules. In all the tests, the 
most promising results were obtained using the 
Response Surface Optimization (RSO) module. Design 
iterations that were started from parameters of Model 1 
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and Model 4 achieved the best optimal designs, with 
gains in the total aerodynamic efficiency reaching 15%. 
Figures 11 and 12 illustrate results obtained from the 
RSO optimization runs for Model 1.  
 
 
 

 
Figure 10: Base design models 

 
 
 

 
Figure 11: History of objective function – Model 1. 

 

 Figure 12: Results of design optimization for Model 1. 
 
In spite of certain success of these results, it is evident 
that the RSO algorithm was only able to achieve a local 
optimum, particularly since different base models led to 
different final designs. Unfortunately, the attempts to 
employ non-gradient-based methods, such as the 
Particle Swarm Optimization (PSO) algorithm, were 
unsuccessful due to extreme sensitivity of the 
automated mesh generator that was unable to handle 
radical design variations typical, e.g., of the PSO 
strategy (a similar trend and outcome were noted for 
test runs using the genetic algorithm). 
 
 

 Figure 13: Summary of design optimizations for 
different base models. 

 
Future Work 
The next phases of this project could address several 
unresolved issues. First, the performance of non-
gradient-based optimization schemes needs to be more 
thoroughly investigated. This includes a family of 
evolutionary algorithms, with increased number of 
blade parameters allowed to vary. The encountered 
difficulties in using such algorithms could be partially 
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resolved by re-visiting the blade geometry 
parameterization, and imposing more efficient 
constraints on allowed geometry variations. On the 
other side, the excessive sensitivity of BladeGenPlus 
unstructured mesh generator, that precluded such 
methods from being effectively tested, needs to be 
further explored. Finally, we plan to integrate our 
acoustic prediction capabilities in the optimization 
process. Several approaches to developing a noise 
metric to be included in the objective function may be 
investigated. One option is to select a control surface in 
the fan near-field where the CFD-resolved unsteady 
flow data can be extracted and propagated, using, e.g., a 
Kirchhoff surface code, to a chosen far field observer 
location, where the noise metric is then calculated. 
Another approach would be to focus on developing the 
metric based on predicting individual sources. For 
instance, the trailing edge noise alone may be targeted 
as the dominant broadband acoustic source. The 
integral solver predicting the trailing edge noise can be 
developed based on the RANS CFD solution output for 
turbulent flow properties along the blade surface 
(discussed, e.g., in Refs [14, 15]).   
 

 
CASE STUDY II: OPTIMAL AEROACOUSTIC 

DESIGN OF HIGH-SPEED PROPELLER BLADE 
 
In this project, we tested the automated MDO system 
for future applications to aeroacoustic shape 
optimization of the blade geometry of a high-speed 
propeller or rotor. In the developed optimization 
process, the Aero/Acoustic Propfan Module (AAPM) 
code [16] was integrated with MDO environment as a 
response analysis tool.  
 
The AAPM code predicts both aerodynamic 
performance and acoustic radiation of high-speed 
propellers with arbitrary blade geometry. The blade 
aerodynamic loading is computed using an unsteady, 
nonlinear panel method modeling propeller blades and 
evolution of their wakes. The acoustic predictions are 
obtained from an integral method that uses the 
aerodynamic results to calculate the propeller blade-
passing frequency (BPF) harmonics corresponding to 
the dipole and monopole acoustic sources; the latter 
resulting from the blade aerodynamic loading and 
thickness distributions, respectively (the prediction 
algorithm closely follows a number of well-known 
works in the area of open-rotor acoustics, particularly 
Ref. [17]). The AAPM code was extensively tested for 
accuracy of aerodynamic and acoustic predictions 
against experimental data in Ref. [16]. It was developed 
for use in aeroacoustic optimization studies, and thus 

employs an efficient geometry parameterization scheme 
that will be further explored in the future projects. 
   
The current test study allowed to examine several 
optimization modules involved both in unconstrained 
and constrained design optimization processes. As 
usual, the selection of the objective function, imposed 
aerodynamic and geometric constraints, and design 
variables, was done in VisualDOC’s input file, as 
illustrated in Figures 14 and 15.  Design variables 
included the blade installation angle (φο), the number of 
blades (NBLADES), tip diameter (Diam), and the blade 
rotational speed (N).  The ability to specify variable 
types as continuous, integer or discrete was particularly 
useful. 
 
The optimal blade design was conducted with objective 
to minimize the blade noise metric, defined here as the 
first BPF harmonic at a fixed far-field observer position 
located in the plane of the propeller.  The original blade 
model is depicted in Figure 16, and the “starting point” 
for design parameters in this study is shown in Table 2.  
The overall blade geometry was fixed in this test, along 
with the flight Mach number (0.32). 
 
 

 
Figure 14: Specification of design optimization 

variables in VisualDOC. 

 

 
Figure 15:  Specification of objective function and 

aerodynamic constraints in VisualDOC. 

 
In the course of the design optimization run, the AAPM 
code was returning the propeller thrust, power (with 
their coefficients) and efficiency, that could be used as 
aerodynamic constraints, as well as the predicted 
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loading (LL), thickness (LT) and total (LS) noise levels 
(Figure 15). 
 

 
 

Figure 16:  High-speed propeller model. 
 

The optimization analysis was performed for two cases. 
In the first case, no limits were imposed on the design 
variables. The total noise level in decibels was defined 
as the objective function to be minimized in an 
unconstrained optimization process. In the second case, 
certain ranges for the variation of design variables were 
prescribed for the constrained optimization process. 
The limits imposed in the second case are detailed in 
Table 2. 

 
Variable Lower Limit Starting Point Upper Limit 

NBLADES 2 8 12 

Φo(deg) 20 34.45 60 

Diam (m) 0.4 0.622 0.80 

N (rpm) 6000 8550 12000 

Table 2: Design parameters for constrained 
optimization run.  

 
Unconstrained Optimization  
The unconstrained optimization case was studied using 
the Fletcher-Reeves (FR) and Broydon-Fletcher-
Goldfarb-Shanno (BFGS) gradient-based algorithms 
from the GBO module, and the Response Surface 
Optimization (RSO) algorithm. The non-gradient 
Particle Swarm (PSO) and genetic (GA) algorithms 
were not employed in the unconstrained studies, as both 

require limits to be imposed on the optimization 
variables.  
 
Figures 17-19 illustrate results from application of RSO 
algorithm that appeared more successful compared to 
others in this particular test. Note that the optimizer 
attempts to reduce the total noise level by first 
unloading the blade, which results in minimum thrust 
and power, and thus minimizes the loading noise 
component (LL) in Figure 19. The number of blades has 
increased that could result in higher LT component, but 
the trade-off is found by decreasing the propeller 
diameter and rotational speed, eventually bringing all 
noise components to a minimum. This test represents 
merely a “sanity” check for the performance of the 
automated optimization system, as, clearly, the results 
lack engineering sense when no constraints are imposed 
on the propeller aerodynamic performance.  
 
 

 
Figure 17:  Unconstrained optimization using RSO 

algorithm: iteration history for design variables. 
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Figure 18:  Unconstrained optimization using RSO 
algorithm: iteration history for thrust and power.  

 
Constrained Optimization 
The constrained optimization studies were performed 
using the GBO module’s Modified Method of Feasible 
Directions (MMFD), Sequential Linear Programming 
(SLP) and Sequential Quadratic Programming (SQP) 
gradient-based algorithms, the RSO module, and the 
EO module’s PSO and GA algorithms. In addition to 
limits on design variable shown in Table 2, lower 
bounds were imposed on the propeller efficiency and 
the amount of produced thrust, as indicated in Table 3.  

 

Parameter Lower Bound 

Efficiency (η) 0.70 

Thrust (kgf) 90.00 
Table 3: Constraints on aerodynamic performance. 

 
These additional constraints were specified to 
investigate designs that could reduce total noise while 
maintaining the aerodynamic performance of the base 
model.   

 
Figure 19:  Unconstrained optimization using RSO 
algorithm: iteration history for efficiency and noise. 

 
Figures 20-22 show the iteration history for design 
control variables, aerodynamic parameters, and 
produced noise, obtained using the best-performing 
PSO algorithm. A significant reduction of dB levels for 
all noise components (Figure 22) at the observer 
location is obtained by increasing the number of blades 
and blade installation angle, while decreasing the 
propeller rotational speed (Figure 20). Note that the 
aerodynamic constraints are also satisfied (Figures 21-
22).  
 
The overall performance analysis for those four of all 
tested algorithms that showed a noticeable 
improvement in the objective function (Table 4) 
suggests that, in general, the results varied significantly, 
with one exception of the gradient-based SLP algorithm 
that produced trends similar to PSO’s results. One 
general trend that distinguished the performance of the 
evolutionary-type algorithms compared to the gradient 
ones was the ability of the former to operate on the 
complete range of design variables. For instance, all the  
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 Figure 20:  Constrained optimization using PSO 
algorithm: iteration history for design variables. 

 
gradient-based optimization runs  kept  the  number of 
propeller blades unchanged. For that reason only, SLP 
underperformed by 10 dB in total noise level reduction 
compared to PSO, still producing a better design than 
GA in just a few iterations.  In general, the observed 
number of design iterations required to achieve the 
optimal design is a reflection of the typical non-linear 
increase in computational resources required for non-
gradient based algorithms (compare the number of 
design iterations in Table 4). 
 
Further benchmark studies on the algorithms’ 
performance will be needed in order to more thoroughly 
investigate various tuning capabilities that are available 
in the menu of VisualDOC’s options. Such tuning 
parameters could significantly improve the relatively 
poor results produced in the current test study by GA, 
RSO, and several tested gradient-based algorithms. The 
next stage of this project will also include new design 
variables that fully parameterize the blade geometry, for 
a more complete study of optimal aero/acoustic blade 
design.  
 
Future Work 
In a modern high-bypass turbofan engine, the high-
speed fan is a major source of  noise radiation.  On  the  

Figure 21:  Constrained optimization using PSO 
algorithm: iteration history for thrust and power. 

 
other hand, a significant portion of the BPF tones 
(dominating in open-rotor configurations) is suppressed 
by the bypass duct. One of the remaining important 
mechanisms of the tonal noise production is due to 
Tyler-Sofrin modes caused by unsteady rotor-stator 
interaction phenomena. With the latter usually 
controlled by selecting proper blade counts and duct 
acoustic liners, the broadband sound spectrum caused 
by the blade “self-noise” acoustic sources becomes one 
of the dominant fan noise components. The fan 
broadband acoustic radiation is difficult to control, and 
thus one approach would be to separately investigate 
the blade geometry optimization specifically targeting 
the broadband acoustic sources. That will require 
adding new acoustic prediction capabilities to the 
database of response analysis tools, and changing 
parameters of the noise metric in the multiobjective 
optimization study. This again could involve exploring 
various existing models predicting, e.g., the blade 
trailing edge noise (for instance, in Refs. [14, 15]), that 
employ the turbulent boundary layer statistics in the 
form that can be either extracted from RANS or LES 
calculations, or obtained from an empirical database. 
Once validated, such models could be included in the 
optimization     process    either    as   separate   acoustic  
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Figure 22:  Constrained optimization using PSO 
algorithm: iteration history for efficiency and noise. 

 
prediction modules, or in combination, e.g., with a 
RANS solver (such as BladeGenPlus) that could be 
used to compute the required turbulence parameters. 
The latter could also be employed for more accurate 
predictions of the blade aerodynamic loading, e.g., at 
transonic tip speeds. In a more complete optimization 
scheme, several acoustic modules, targeting both tonal 
and broadband noise components, could be coupled 
together to produce an integral noise metric accounting 
for noise radiation from various blade acoustic sources. 
Note that structural constraints can be efficiently 
incorporated in the process using another component of 
the optimization system, the GENESIS software. 
Finally, for a more efficient optimization process, the 
future work will also explore the parallel performance 
capabilities of the distributed MDO environment. 
 
 
 
 

 Base 
Design SLP SQP PSO GA 

NBLADES 8 8 8 12 11 

Φo (Deg) 34.45 46.96 40.37 45.52 35.00 

Diameter 
(m) 0.6220 0.6431 0.5606 0.6429 0.8000 

N (rpm) 8550 6007 8549 6000 6057 

Thrust 
(kgf) 

92.25 89.97 90.04 90.25 113.10 

Power  
(HP) 180.30 184.95 186.57 184.40 216.33 

Efficiency  
(η) 0.7420 0.7054 0.6998 0.7098 0.7581 

Loading 
Noise 

LL (db) 
115.49 106.37 114.41 93.58 107.89 

Thickness 
Noise 

LT (db) 
123.93 101.51 115.99 94.80 119.24 

Total Noise 
LS (db) 123.17 105.77 116.09 95.08 118.50 

# of Design 
Iterations  8 7 100 60 

Table 4: Constrained optimization: summary of results. 

  
SUMMARY 

 
This work conducted two studies examining approaches 
to optimal blade design using the developed automated, 
industry-like multidisciplinary design optimization 
(MDO) environment. For low-speed fan applications, a 
commercial CFD software coupled with an automated 
unstructured mesh generator was employed as a 
response analysis tool in a constrained, automated 
design optimization process, with objective to 
maximize the fan static efficiency. A separate study 
examined an approach to blade shape optimization to 
minimize tonal noise radiation from a high-speed 
propeller, with the response analysis module developed 
on the basis of nonlinear panel method coupled with an 
integral acoustic solver. The studies examined success 
of various optimization algorithms, including gradient-
based and evolutionary, in finding global minima of the 
corresponding objective functions. Thus, the projects 
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served as benchmarks for testing the performance of the 
developed MDO environment by addressing numerous 
issues in the automated optimization procedure, such as 
those related to proper geometry parameterization, 
algorithm selection, and transparent interconnections 
between different elements of the design optimization 
process.  
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