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The work discusses construction and application of an automated, distributed, industry-like multi-
disciplinary design optimization (MDO) environment employed to explore new conceptual designs of 
propulsion system turbomachinery components optimized for high-efficiency performance.  The integrated 
CFD/MDO system is developed on the basis of commercially available optimization modules, and involves a 
user-friendly interface that provides an easy link to user-supplied response analysis modules. Various issues 
in the automated optimization procedure are addressed with focus on turbomachinery design, including the 
proper geometry parameterization, algorithm selection, and transparent interconnections between different 
elements of the optimization process. A test study considers the problem of an optimal blade design to 
maximize the aerodynamic performance of a low-speed fan. The approach employs a commercial CFD 
software, coupled with an unstructured mesh generator, as a response analysis tool. The ability of the applied 
Response Surface Optimization algorithm to find a global optimum of the objective function is examined.  
 
 
 

Nomenclature 
CP - Bezier control point 
M  - Meridional (axial) CP coordinate 

'M  - Normalized meridional CP coordinate (M’ = M/R) 
p   -  Thermodynamic (static) pressure  

R - Fan radius 
RSO - Response surface optimization algorithm 
S - Fractional distance along a curve in the CFX-Bladegen coordinate system (0 ≤ S ≤ 1) 
t - Time 
t - Blade airfoil thickness 
β  - Tangential CP coordinate 

δ  - Displacement factor for CP meridional coordinate  
ε  - Efficiency 
θ  - Blade leading edge circumferential angular  (LECA) coordinate 
ξ  - Airfoil stagger angle 
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Subscripts: 
abs - absolute frame of reference 
h - hub location 
LE - Leading edge 
r - CP span layer index (1 ≤ r ≤ 5) 
rel - relative frame of reference 
s - CP meridional (axial) index (1 ≤ s ≤ 4) 
S - Static 
T - Total 
TE - Trailing edge 
 

I. Introduction 

HE efforts to merge MDO and CFD technologies in application to engineering design of fluid system 
components have been rapidly increasing in recent years. This has been a particularly visible trend in the 

conceptual aircraft design, where, as stated in Ref. [1], with the availability of high performance computing 
platforms and robust numerical methods to simulate fluid flows, it became possible to shift attention from CFD 
development to automated design procedures combining CFD with optimization techniques in determining optimum 
aerodynamic designs. On the other hand, the major studies in this area were primarily devoted to the classical 
benchmark of an optimal aerodynamic design for a 2D airfoil, with the main efforts devoted to issues of the proper 
airfoil geometry parameterization and selection of an efficient optimization algorithm. In this regard, e.g., Fanjoy 
and Crossley [2] developed a method to optimize airfoil designs by using 21 design variables representing the 
control points of a B-spline, which appeared sufficient to reproduce nearly any arbitrary shape, but introduced 
geometric waves between control points translated to “wavy” velocity distribution in the analysis. A similar 
approach with 10 control point was employed by Pulliam et al. [3] in their comparison of genetic and adjoint 
methods for viscous airfoil optimization. Alternatives to the direct-design approach, including inverse methods to 
parameterize the geometry by matching it to the optimal flowfield conditions, were also developed [4]. For 
rotorcraft airfoils, a study on aeroacoustic optimization using a genetic algorithm was conducted in Ref. [5]. Using 
simplifying assumptions for low-order aeroacoustic analysis without structural constraints, a set of rotor airfoil 
shapes was generated representing a compromise between aerodynamic efficiency and minimum noise. Among the 
generated shapes, airfoils with waves on the upper and lower surfaces were predicted to produce reduction in the 
overall sound-pressure level. For 3D geometries, several recent works (e.g., Refs. [6-7]) addressed optimal wing and 
aircraft configurations, some using a multiobjective optimization strategy, and increasingly relying on evolutionary 
algorithms. Various methods to parameterize 3D geometries were analyzed, typically resulting in a large number of 
design variables to adequately represent the optimized shapes in terms of Bezier surfaces or B-splines. In one such 
study [8], a fuselage of a supersonic transport was parameterized in terms of 37 Bezier polygons, resulting, for an 
integrated wing-fuselage configuration, in 131 design variables. Various works also discussed automated grid 
generation procedures.     
 The design of highly efficient and quiet turbomachinery and generally propulsion system components represents 
a challenging task in many industrial applications ranging from aeropropulsion (e.g., turbofan and turboprop 
engines) to automotive and air-conditioning industries (e.g., cooling fans). The challenge is presented by the variety 
of flow and geometric parameters affecting the aerodynamic and acoustic performance, as well as the complexity of 
multi-scale unsteady flow-structure interaction phenomena, leading, e.g., to numerous noise-producing mechanisms 
and difficulty in their description and prediction.  
 In the present work, we address several critical issues related to the optimal design in turbomachinery by 
examining them in the context of the automated, industry-like MDO environment, developed and distributed on a 
parallel high-performance computer cluster. The main elements of any automated MDO system can be roughly 
subdivided into three major categories [9]:  (i) CAD Modeling; (ii) Grid Generation; (iii) Design and Optimization 
Tools (including response sensitivity analysis). Each of these categories has been a focus of intensive research 
activities in recent years, aimed, in particular, at establishing transparent links for integrating all components in one 
automated, robust design and optimization process. The automated design systems thus must provide with the 
following capabilities [9]: (i) Use CAD for geometry creation; (ii) Generate grids automatically (black-box grid 
generation system); (iii) Use a common geometry representation for all disciplines involved in optimization process; 
(iv) Calculate analytical grid and geometry sensitivities; (v) Transfer data among disciplines consistently; (vi) 
Operate in an integrated system; (vii) Parameterize discipline models consistently. Below, we examine selected 
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aspects of these features as they are implemented in our integrated system and further in the test problem. We first 
review the main elements of our automated optimization system to illustrate its various capabilities, particularly 
related to the requirement to ensure a fully automated and efficient design optimization process. Next, we discuss 
the benchmark test study dealing with the optimal shape design of a fan blade. In this study, we employ CFD 
software coupled with an automated unstructured mesh generator, with objective to maximize the fan total 
efficiency. A procedure developed for the proper parameterization of the blade geometry to achieve the optimal 
blade design is discussed, and could be found particularly useful in a variety of industrial turbomachinery 
applications that employ the commercial CFD packages.  
 
 
 

II. Autimated MDO System 
 The essential elements of our industry-like, distributed, automated design optimization system include two 
software components developed by VR&D, Inc.: VisualDOC and DOT [10]. The primary component in most design 
optimization procedures, VisualDOC, is a graphics-based, general-purpose design optimization software system 
designed to interface easily to third-party analysis programs using its dedicated VisualScript interface. Design 
Optimization Tools (DOT) is a library of software modules that is designed to help solve a variety of nonlinear 
constrained or unconstrained optimization problems (used in many existing design optimization products, such as 
GENESIS, VisualDOC, MSC/NASTRAN, ADAMS, FEM5, POLYFEM, DAKOTA). VisualDOC’s structure 
includes a graphical user interface (GUI), a database, and several functional modules. The central part of the system 
is the object-rational, multi-user, platform-independent database acting as a container for all design information. 
GUI allows launching design tasks, performing real-time monitoring of the optimization process, and post-
processing results for various forms of design variables that may be in continuous, integer, discrete, or any 
combination forms.  
 
A. Optimization Modules 
 The backbone of the optimization system is its functional modules performing the actual optimization, design 
study, etc. The menu includes the Gradient-Based Optimization (GBO), Design of Experiments (DOE), Response 
Surface Optimization (RSO), and Evolutionary Optimization (EO) modules. 
 GBO tools include extensively tested DOT software algorithms, such as sequential quadratic programming, 
modified method of feasible directions, sequential linear programming, Fletcher-Reeves, Broydon-Fletcher-
Goldfarb-Shanno, and sequential unconstrained minimization technique methods, for various constrained and 
unconstrained multiobjective optimization problems. In the optimization process, VisualDOC calculates gradients of 
response-supplied cost functions and constraints using finite differences, but provides an option to employ user-
supplied gradients.   
 Both DOE and RSO methodologies are used to establish empirical relationships between design variables and 
responses, which is a highly needed function in physical experiments and nonlinear analyses. They are also 
employed to filter out numerical noise from the analysis. According to Ref. [10], RSO has established itself as the 
most efficient method to use in optimization problems with relatively few (up to about 20) design variables, when 
the computational cost of performing a single analysis is high (a general trend in the growth of the number of terms 
in polynomial response surface models is shown in Figure 1). DOE works on the statistics of the design space 
distribution, thus helping to identify the design variables that have the most influence on the responses, and 
construct response surface approximations. A set of employed standard statistical DOE tools include full and 
fractional factorial, composite, simplex, Koshal, Box-Behnken, random, Latin Hypercube, Taguchi orthogonal 
arrays, D-optimal, and several other designs.  
 Finally, the Evolutional Optimization module includes Genetic and Particle Swarm Optimization algorithms, 
which benefits include better chances of finding global optima while not requiring gradient information, and good 
handling of numerical noise. 
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Figure 1: Influence of response surface models on number of design variables (courtesy VR&D, Inc.). 

 
 From the standpoint of the current test studies, one of the most important benefits of the system is its ability to 
efficiently interact with the third-party engineering analysis programs such as CFD and structural analysis tools.  
Such interaction is facilitated through a menu of interfaces, including ASCII-based Simple Text File Interface, 
multi-level Enhanced Text File Interface (VisualScript), and various specialized interfaces to MATLAB, Excel, and 
other analysis programs. Finally, another important VisualDOC’s feature, for application to complex optimization 
problems, is the system’s parallel computing capability. All the MDO functional modules, along with vectorized 
response analysis codes, have the ability to run in parallel on designated computer nodes using MPI message 
passing, thus creating a truly distributed environment. Although this feature has not been employed in the current 
benchmark tests, future studies will investigate effective use of the available networked cluster resources. 
 
 

III. Test Study: Optimal Aerodynamic Design of a Fan Blade 
 The primary purpose of this project is to test the performance of the automated, distributed MDO/CFD 
environment designed for its future use in industrial turbomachinery MDO applications. We consider the task of an 
optimal blade design to maximize the total efficiency of an axial fan with uniform upstream flow using commercial 
CFD software, commonly employed in industrial turbomachinery design.  The focus is on examining various 
approaches to the efficient parameterization of the blade geometry that would be most appropriate for the robust 
automated MDO process when employed in conjunction with a commercial CFD product. Contrary to the airfoil 
design studies, no guidelines have yet been established for the efficient parameterization of the three-dimensional 
blade geometry. The objective function for this study is the total efficiency (εT) of the fan blade, defined as: 
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A. Commercial CFD Solver as a Response Analysis Tool 
 As a response analysis tool, we have selected BladeGenPlus software component from the CFX TurboPlatinum 
Package by ANSYS, Inc. (currently integrated in the ANSYS Workbench, Ref. [11]). This RANS CFD blade-
passage solver is one of the most efficient commercial CFD analysis tools used in industrial turbomachinery design 
applications. BladeGenPlus is an integrated blade design software (BladeGen) coupled with the blade passage 
unstructured RANS solver. The software is integrated with VisualDOC in the automated optimization process 
governed by VisualScript.  

 
Figure 2: Sample unstructured mesh profile for CFD analysis  
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B. General Optimization Approach: Interaction of MDO Components 
 In the optimization process, the fan operating conditions are set either as specified parameters, or constraints in 
the optimization cycle, and include: (i) volumetric flow rate, (ii) range of safe (unstalled) fan operation, and (iii) fan 
static pressure rise. Fan diameter is usually prescribed as a geometric constraint. Additional geometric constraints 
are imposed on the design parameters used in the parameterization of the blade geometry. No structural constraints 
are imposed in this test study.  
 The initial task involves selection of proper parameters that completely and efficiently define the fan blade 
geometry (discussed in detail below). These parameters are then passed to the optimization module that generates 
another set of parameters describing a new, prospective blade design.  At the next stages, the new blade geometry is 
generated in BladeGen, followed by an automated unstructured mesh generation, CFD analysis, and transfer of 
results to the optimization module. Figure 3 illustrates a general flowchart of the optimization process. In summary, 
the optimization task can be roughly subdivided into four major segments: (i) Generation of blade geometry using 
BladeGen software based on current input parameters; (ii) CFD analysis performed on a new blade design using 
BladeGenPlus; (iii) Passing results of CFD analysis to VisualDoc optimizer; (iv) Generation of a new set of design 
parameters based on an iterative step of the selected optimization algorithm. In what follows, we briefly describe 
some essential elements of the MDO process and their functions, with more details provided in Ref. [12].  
 

 
Figure 3: General MDO component flowchart 

 
C. Parameterization of Blade Geometry 
 A critical step in the automated design optimization procedure is the selection of an efficient way to 
parametrically describe the blade geometry. The blade model is developed using the BladeGen turbomachinery 
component design utility from ANSYS, Inc. The coordinate system utilized in generating the three dimensional 
blade geometry is illustrated in Figure 4, where 
 
 

 
Figure 4: Blade geometry coordinate system 
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δM - differential meridional displacement; 
δR - differential radial displacement; 
δM - differential axial displacement; 
δθ - blade leading edge circumferential angle (positive: x-towards-y); 
δM’  - meridional coordinate (δM) normalized by the radial coordinate, R (thus, δM’=δM/R).      

In BladeGen, the blade model is defined by data points distributed over a number of user-specified constant-
radius layers, spanning from 0% at the hub to 100% at the shroud. The geometrical properties, including blade 
angles and thickness distributions, are then specified at each spanwise layer, and interpolations between layers are 
employed to generate the three-dimensional geometry. 
 

 
 

Figure 5: Meridional View (LHS) of Fan with Span Layers Visible 

  
At each span layer, the blade section (airfoil) is created using the BladeGen coordinate system to specify a set of 

points which represent the camberline (meanline) of the blade section at that span layer. The camberline coordinates 
are specified using a “β-M” distribution from the leading edge (LE) to the trailing edge (TE). A thickness 
distribution is then superimposed on the camberline to create the complete profile of the blade section. A standard 
NACA 0012 thickness distribution is used for all the models in this test study in order to reduce the number of 
design parameters. A separate study investigating the effect of thickness distribution is anticipated in the future.  

   

 
Figure 6: Blade profile generation at constant radius span layer 

 The methodology for generating the blade profile is illustrated in Figure 6 and further below. In Figure 6(a), the 
camberline is shown in the “β-M” coordinate system.  Figure 6(b) shows the camberline along with the 
superimposed blade thickness distribution. In Figure 6(c), a 3rd order Bezier control polygon is generated to control 
the shape of the blade section camberline. The use of the Bezier control polygon is to ensure that the camberline is 
smooth and free of discontinuities, a necessary requirement for generating valid blade geometries. 
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The coordinates of the control points (CPs) that describe the Bezier control polygon are used as design 
parameters in the design optimization study. A total of 5 span layers are specified to generate the blade geometry. A 
distinct Bezier polygon is necessary to generate the blade profile using each of the five span layers. Four x-y 
coordinate pairs corresponding to the β-M BladeGen coordinates are required for each of the 5 Bezier polygons, 
yielding a total of 40 design parameters (5 Span layers * 4 coordinate pairs). In essence, the blade geometry “control 
grid” is generated which consists of β-M coordinates of all the Bezier control polygons for each of the 5 span layers, 
as illustrated in Figure 7. 

  
Figure 7: Blade geometry “control grid” with Bezier coordinates for camberlines at all span layers 

 
In order to appropriately locate Bezier control points on the grid, an indexing system is developed that employs 

the “r|s” subscripts to indicate the location of the control points. The subscript r designates the span layer at which 
the CP resides (1 ≤ r ≤ 5).  The subscript s designates the index of the CP along the Bezier polygon (1 ≤ s ≤ 4) (i.e., 
the LE line control points have an index of 1, while the TE line of the Bezier polygon has an index of 4). The use of 
the Bezier polygons to generate the blade profiles at each span layer provides the ability to specify the hub-to-shroud 
twist variation of the blade model. The hub-to-shroud sweep of the LE line of the blade is specified using the LE 
circumferential angle (θ). This angle (LECA) is specified at each span layer from the hub to the shroud, which 
defines the circumferential sweep distribution of the blade, as illustrated in Figure 8. The 5 LECAs, combined with 
the 40 Bezier coordinate control points, result in a total of 45 design parameters specifying the blade geometry. 

 
 
 

 
 

Figure 8: Nomenclature for blade circumferential sweep 
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D. Constraints on Design Variables 
 The number of design variables (45) in the initial blade parameterization scheme can be decreased by applying 
certain constraints. The first set of constraints involves fixing the M’(x) coordinates of the Bezier control points 
specified along the blade leading and trailing edge lines (10 coordinates). The β(y) coordinates of the LE line Bezier 
control points are also held constant (5 coordinates). The primary reasons for fixing the LE Bezier coordinates is to 
ensure that the blade angles along the leading edge line match those specified based on the blade vortex models used 
to generate the initial blade designs. These constraints eliminated a total of 15 design parameters, thus leaving 30 
design variables. 
 An additional modification to the parameterization scheme is made to ensure that the third Bezier control point 
always follows the second Bezier control point when the polygon is generated. This is achieved by generating the 
meridional coordinates of the third Bezier CP using a displacement factor, δ, and applying the following relationship 
at each span layer: 

5)90( 2|
'

2|
'

3|
' +−+= rrrr MMM δ            (4) 

with limits 80'10 2| ≤≤ rM  and 10 ≤≤ rδ , where δr is the displacement factor at a span layer with index r. 
 

 
Figure 9: Blade geometry control grid (constrained coordinates are shown in black on the right) 

 
The modified control grid for the blade geometry with constrained (black) and unconstrained (colored) M’(x) 
and β(y) Bezier coordinate points is shown in Figure 9. The resulting effect is the reduction of the actual Bezier 
design variables from 40 to 25 (compare with Figure 7), with additional constraints imposed on the relative positions 
of the coordinate points residing at the adjacent span layers. Combined with 5 LECA variables, the total number of 
the design variable specifying the blade geometry is 30.  
 In the optimization study, the number of fan blades, and the rotational speed (RPM) of the fan, are included as 
design variables, for a total of 32 design parameters.  
 
 
E. Automated Response Analysis Procedure  
 It is essential to maintain the response analysis stage as a completely automated, non-interactive segment of the 
optimization process. To this end, a set of batch executable utilities is implemented to accomplish the goal. In 
particular, the following BladeGenPlus utilities are employed:  
• BladeBatch converts the optimizer-generated, ASCII-based blade model into the BladeGen design format;  
• BgBatch applies new operating parameters, such as the fan RPM and upstream flow conditions, to the model; 
• BgGrid generates unstructured blade-passage mesh for the new BladeGen model;  
• BgSolve performs a CFD analysis of the blade passage and stores results in a specified file; 
• BgExtract extracts computational results from the BgSolve output file and stores them in a specified file.  
 
 The need for completely automated optimization and response analysis procedures implies a considerable level 
of robustness to be built in the MDO environment, allowing it to handle extreme design cases. To this end, 
MATLAB scripts are developed to handle the following issues identified as critical to the robustness of the MDO 
methodology: 
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• Invalidity of extremely twisted, swept or distorted blade designs is communicated to the optimization module 
through the Geometry Pass/Fail parameter;  

• Information on blade designs for which mesh could not be successfully generated is passed to the optimization 
module through the Grid Pass/Fail parameter; 

• Invalidity of CFD results stored in the response analysis file is communicated to the optimization module 
through the CFD Pass/Fail parameter. 

 
 Note that the availability of the Pass/Fail parameter in VisualDOC, complemented with the software’s ability to 
easily interface with MATLAB scripts, allows for a considerable robustness of the automated MDO process, as the 
latter is not immediately terminated in the event of problems associated with invalid blade designs, unsuccessful 
mesh generation, or unsuccessful CFD analysis (in all cases, the optimization process automatically recovers and 
continues).  
 

 

 
 

Figure 10: Details of the automated MDO process 
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Figure 11: VisualDoc’s specification of the case parameters 

 
The optimization module of the design process detailed in Figure 10 consists of the VisualDoc and VisualScript 

components. VisualDoc controls implementation of the selected optimization algorithm whose results are based on 
the CFD response analysis of the previous design iteration. A new set of design variables is generated by VisualDoc, 
and transferred for further analysis as part of the MDO process governed by VisualScript. The latter is thus 
responsible for all calls to various batch utilities performing critical analysis tasks, including the blade geometry 
modeling, grid generation, CFD analysis, and transfer of the CFD results to the optimizer. 
 Figure 11 shows the design variables and response parameters in the test study, as specified in the VisualDoc’s 
graphical user interface (GUI). The responses include the target function (total efficiency) along with other 
performance characteristics such as the fan head rise, blade torque and static efficiency (more details are provided in 
Ref. [12]).  
 
 
F. Selection of Optimization Algorithm  

The response surface optimization (RSO) algorithm has been selected for the test study. RSO has established 
itself as a more efficient method when the computational cost of performing a single analysis is rather high [10], 
which is the case in the current MDO study. On the other hand, the RSO algorithm is more effective when the 
number of design variables is not too high (Figure 1 illustrates a nonlinear growth in the required number of data 
points, i.e., calls for the response analysis, as the number of variables increases). This effect is even more 
pronounced for more accurate, higher-order response surface models. 

In order to increase the efficiency of the RSO algorithm in the current study, the 32 design variables are grouped 
into subsets. The blade design is thus sequentially optimized relative to the subsets of the design variables (i.e., the 
blade design is first optimized relative to the first subset, with the best obtained design then optimized relative to the 
second subset, etc.). The process is carried out iteratively until no appreciable increase in the objective function can 
be obtained. Table 1 shows the employed subsets of design variables, and the order in which the optimization on the 
subsets is performed.  

 

ORDER 
VARIABLES 

(Unless otherwise specified, r = 1..5) TOTAL # 

1 β coordinates of interior Bezier control points (βr|2, βr|3) 10 

2 Circumferential LE sweep  angle (θr) 5 

3 Meridional coordinate of CP2 (M’r|2) 5 

4 Displacement factor for CP3 meridional coordinate (δr) 5 

5 β coordinates of TE Bezier control points (βr|4) 5 

6 Fan RPM and number of blades. 2 

Table 1: Subsets of design variables in the MDO study 
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 VisualDoc’s implementation of the RSO algorithm requires that bounds are imposed on the design variables 

and response parameters, in order to define the design space within which the response surface is generated. The 
bounds imposed in the current study are shown in Table 2. Additional restrictions and included in Table 3 with the 
purpose of selecting a more accurate (quadratic) response model without imposing excessively stringent 
optimization convergence criteria. 
 
 

DESIGN 

VARIABLE 

LOWER 

BOUND 

UPPER 

BOUNDS 

RESPONSE 

PARAMETER 

LOWER 

BOUND 

UPPER 

BOUND 

# of  Blades 2 20 PFBladetest 0 None 

RPM -1500 -500 PFGrid 0 None 

δr  0 1 PFResults 0 None 

M’r|2 10 80 VolFlowRate(m3/s) 3.00 6.00 

βr|s  SP* – 40 (10)+ SP* +40 (80)+ Total Efficiency 0.25 1.00 

θr  -30 30 Static Efficiency 0.00 1.00 

 
* SP – Starting point of Bezier coordinate (from base design) 
+ Min/Max value (used if computed bound exceeds this value) 

Unless otherwise stated, 1≤ r ≤ 5 and 1≤ s ≤ 4 

Table 2: Upper and lower bounds for design variables and response parameters in MDO study 
 
 

Min Number of Design Points 4 
Max Number of Design Points 106 

Number of User Supplied Design Points 1 
Order of Approximations Full Quadratic 

Generate Initial Points Simplex Design 
Consecutive Iterations for Convergence 5 

Initial Quadratic Relative Move Limit 0.2 
Quadratic Absolute Move Limit 0.02 

Relative Objective Convergence Tolerance 0.001 

Absolute Objective Convergence Tolerance 0.0001 

Relative Design Variable Convergence Tolerance 0.001 

Absolute Design Variable Convergence Tolerance 0.0001 

Constraint Tolerance -0.03 

Violated Constraint Tolerance 0.003 

Objective Maximize 

 

Table 3: Parameters of the Response Surface model and optimization convergence criteria 
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III. Results of the MDO Test Study 
 In the MDO study, three base fan models (prototypes) are used to examine the ability of the MDO algorithm to 
converge to a globally optimal fan design. We first discuss optimization results obtained for each base design, and 
further compare them.  The three base designs used in the MDO study are shown in Table 4. 
 
 MODEL1 MODEL2 MODEL3 
 

   
Rotational Speed (RPM) 1140 1720 1140 

Diameter (in) 30 24.3 30 

Number of Blades 9 9 9 

Rhub/Rtip 0.4 0.4 0.45 

Chord Ratio Ctip/Chub 2 2 1.88 

Table 4: Fan prototype models 

 
A. MDO Results for Model 1 
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Figure 12:  Target function plot for Model 1 

Figure 12 illustrates the history plot of the target function (efficiency) for Model 1 based on the sequential design 
optimization conducted on the subsets of design variable. Figure 13 summarizes the efficiency gains obtained for 
each subset, and compares the base and the optimized fan geometries. Note a remarkable wavy shape of the leading 
edge line in the optimized blade design. The total efficiency gain for Model 1 is approximately 11% after 323 design 
iterations. The largest gain in efficiency is obtained from the simultaneous variation of the fan rotational speed 
(RPM) and the number of blades. In terms of the Bezier geometry variables, the largest efficiency gain is obtained 
from variations of the blade β coordinates. In order to re-examine the method of sequential subset optimization 
employed in the study, an additional round of design iterations is conducted by separately varying the sweep 
distribution of the blade LE line. The efficiency gain of 0.41% (compared to the original 1.84%) suggests that the 
method may indeed be successful, provided that the proper subsets of design variables are identified.  
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Figure 13: RSO optimization results for Model 1 

 
 
B. MDO Results for Model 2 
 Similar to the previous case, the design optimization of Model 2 (Figures 14 and 15) results in the wavy blade 
LE line. The efficiency gain plots also show that the simultaneous variation of the RPM and the number of blades 
yields the largest efficiency gain of 9%. The variation of the leading edge sweep (qr) and the β coordinates of the 
Bezier control points (br|i) produces higher efficiency, compared to the gains obtained from the meridional  (M’r|s 
and dr) Bezier CP coordinates. 
 
 

TOTAL EFFICIENCY HISTORY
Response Surface Optimization (RSO) - Model2

1, 0.7433 58, 0.7541

95, 0.7665
149, 0.7703

186, 0.7705

293, 0.8818

232, 0.7899

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0 50 100 150 200 250 300
[Iteration]

Ef
fic

ie
nc

y 
(%

)

Beta_R_2/3 (INT. CPs)

LE_Theta_R

Merid_R_2 

Merid_R_3 Disp Fac 

Beta_R_4 (TE CP) 

RPM + #BLADES

 
Figure 14: Target function plot for Model 2 
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Figure 15: RSO optimization results for Model 2 

 
  
 
 
C. MDO Results for Model 3 
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Figure 16: Target function plot for Model 3 

 
The results observed in Figures 16 and 17 for Model 3 also show similarity to those obtained for the previous two 
models. The wavy leading edge shape is evident, with the efficiency gain plots showing an increase of 11.6%. The 
largest efficiency gain for this model (4.5%) is obtained from the variation of the β coordinates for the TE Bezier 
control point. Large efficiency gains are also obtained from the simultaneous variation of the fan RPM and the 
number of blades, as for the previous two models. Finally, in agreement with the previous results, the fan efficiency 
appears to be much more sensitive to variations of the β coordinates of Bezier control points, compared to the effect 
from the corresponding meridional coordinates. 
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Figure 17: RSO optimization results for Model 3 

 
 

D. Comparison of Results 
Figure 18 and Table 5 compare the efficiency gains for the three base models. In general, the results identify the 

β coordinates of the Bezier control points, and the fan rotational speed and the number of blades, as the critical 
design variables with the most significant influence on the target function (total fan efficiency). An average 
efficiency gain of 12 % is obtained for the three base models. The appearance of the wavy shape of the leading edge 
line in the optimized models needs to be further investigated to determine if this effect is rather related to the 
specific choice of the blade parameterization scheme.  

To conclude on the ability of the RSO algorithm to identify a globally optimal blade design, a comparison of the 
optimized models is presented in Table 5 that shows a noticeable variation between the three resulting designs. 
Further studies will examine if those are primarily related, e.g., to the initial differences in the fan diameters and/or 
the hub-tip ratios of the original models. On the other hand, the resulting large numbers of blades in the final designs 
could be due to the absence of constraints on the total blade torque, forcing the optimizer to increase the solidity of 
the fan designs. 
 

 
Figure 18: Summary of efficiency gains for three models 
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 Model1 Model2 Model3 

RPM 972 1287 1193 

# Blades 12 15 17 

VFR (m3/s) 3.616 3.30 4.96 

Torque (Nm) 17.85 13.41 38.61 

Head Rise (m) 37.66 42.59 76.78 

Static Effic. (εST) 0.598 0.660 0.608 

Total Effic. (εT) 0.871 0.902 0.917 

Total Effic. Gain (δεT) + 10% +7.8% +10% 

δPTabs (MPa) 0.438e-3 0.495e-3 0.892e-3 

dPTrel -0.064e-3 -0.054e-3 -0.080e-3 

dPst 0.301e-3 0.362e-3 0.592e-3 

Table 5: Comparison of optimized fan designs 

 
V. Summary 

In this work, we examined an approach to the optimal blade design using the developed automated, industry-like 
multidisciplinary design optimization (MDO) environment. In a benchmark test study, we employed a commercial 
CFD software (coupled with an automated unstructured mesh generator) as a response analysis tool in a constrained, 
automated design optimization process, with the objective to maximize the fan total efficiency. The study examined 
the ability of the response surface optimization (RSO) algorithm to find a globally optimal design. The project 
served as a benchmark for testing the performance of the developed MDO environment, and addressed numerous 
issues in the automated optimization procedure, such as those related to the proper blade geometry parameterization, 
algorithm selection, and transparent interconnections between different elements of the design optimization process.  
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