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This paper presents a new Kriging-based optimization method. The goal of this research 
is to develop a practical and robust general-purpose Kriging-based optimization tool for 
general design problems. The proposed optimization method efficiently combines Kriging 
approximations with a gradient-based optimizer. The proposed method is applied to several 
test problems to examine its efficiency and versatility.  

Nomenclature 
x = vector denoting position in the design space 
ns = number of sample points for Kriging model 
y(·) = function response  
ŷ (·) = estimated value of y(·) 
R = correlation matrix for Kriging model 
θk = correlation parameter for Kriging model 
µ̂  = estimated global constant for a Kriging model 

2σ̂  = estimated variance for a Kriging model 
s = root mean squared error of (·) ŷ
E[I(·)] = expected improvement 
gi(·) = i-th constraint function 
Vmax(·) = maximum violation of the constraints 

I. Introduction 

KRIGING models are increasingly used as response surface models to approximate computationally expensive 
functions in engineering field.  Various implementations of Kriging models have been investigated.1-3  Kriging 

models are most suitable for approximating response values obtained from deterministic experiments, for example 
computer simulations, since these models interpolate the response values at the observed sample points.  The main 
advantage of Kriging models over polynomial models is the ability of the Kriging models to approximate 
multimodal and highly nonlinear functions.  However, it is still possible that a Kriging model does not capture the 
actual optimum when used to explore the design space.  For example, this may happen when none of the sample 
points are located in the region of the optimum.  For a robust exploration of the design space, both the predicted 
value and the uncertainty of the Kriging model should be taken into account. 

Various implementations of Kriging-based optimization methods have been studied, e.g., Efficient Global 
Optimization (EGO), developed by Jones et al.4-6  Efficient Global Optimization exploits an important advantage of 
Kriging models:  both the predicted value and the associated modeling uncertainty is available at any point in the 
design space.  The underlying Kriging approximation is dynamically updated using a sampling criterion that 
accounts for both the predicted value and the uncertainty.  This sampling criterion defines where the next sample 
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point should be placed in the design space.  For each iteration of the optimization process, the actual response values 
are evaluated at the new sample point and the existing Kriging model is updated, thus efficiently refining the 
Kriging model.  The current work is based on the basic ideas of EGO and proposes the combination of an EGO type 
optimizer with a gradient-based optimizer to improve the convergence properties of the optimization process. The 
proposed optimization method is applied to several test problems to examine its efficiency and versatility. 

II.  Overview of Kriging-based Optimization Method 

A. Kriging model 
Kriging was initially developed in the field of geostatistics and can be regarded as an interpolation model since it 

interpolates responses at all sample data points.  Kriging models provide both an estimated response value and the 
associated uncertainty of the estimated value at any point in the design space.  One of the ways to represent a 
Kriging model that estimates an unknown response function of interest y(x) is as follows: 

 ( ) ( )xx Zy += µˆ , (1) 

where x is an m-dimensional vector (m is the number of design variables).  The model has two parts as shown in 
Eq. (1).  The first is a global constant µ, the second is a realization of a stochastic process with zero mean, Z(x).  The 
Z(x) term represents a local deviation from the global model, calculated by quantifying the correlation of x with 
nearby points.  The covariance matrix of Z(x) is given by Eq. (2). 

 ( ) ( )[ ] ( )[ ]jiji RZZCov xxRxx ,, 2σ=  (2) 

In Eq. (2), R is the correlation matrix, and R(xi, xj) is the Gaussian correlation function between any two of the ns 
sample data points xi and xj.  By using a specially weighted distance, the Gaussian correlation function is defined as 
follows: 
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where θk (θk ≥ 0) are the unknown correlation parameters used to fit the model, and xk
i and xk

j are the k-th 
components of vectors xi and xj.  This function controls the influence of the nearby points and the smoothness of the 
resulting model.  The Kriging predictor for the values of x is obtained from 

 ( ) ( )µµ ˆˆˆ 1 1yRrx −+= −Ty , (4) 

where µ̂  is the estimated value of µ, and y is a column vector of length ns that contains the sample values of the 
response, r is the correlation vector of length ns between an untried x and the sample data points.  

 ( ) ( ) ( ) ( )[ ]TnsRRR xxxxxxxr ,,,,,, 21 L=  (5) 

For any given vector θ that consists of components θk , µ̂  and the estimate of the variance  can be defined as  2σ̂
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The unknown correlation parameters θ of the Kriging model are estimated by maximizing the following 
likelihood function.2  

 ( ) ( )[ ] 2lnˆln 2 Rθ +−= σsnLn  (8) 

where both  and |R| are functions of only θ.  Maximizing the likelihood function is an m-dimensional nonlinear 
optimization problem. Since the likelihood function is multimodal and evaluation of the likelihood function requires 
calculation of the determinant of the matrix R, the maximization problem becomes computationally expensive. 
Moreover, the computational time required to maximize the likelihood function increases exponentially as the 
number of data points n

2σ̂

s increases.  To find the maximum likelihood estimates with minimal computational expense, 
several alternative methods1 were researched.  In this study, a gradient-based method with multiple starting points is 
used.  

The mean square error of the predictor at untried x, s2(x), is obtained as follows:  
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This represents the uncertainty at the estimated point. The root mean squared error (RMSE) is expressed as 
( )x2ss = .  

 Figure 1 shows an example of a Kriging model for approximating a computationally expensive function. In 
Figure 1, hollow points represent sample points obtained from the true function (shown as a dashed line), such as a 
computationally expensive computer analysis.  The chained line at the bottom represents the s values.  One can see 
that the difference between the true function and the Kriging model is large in the vicinity of x = 0.8.  This 
difference is a result of having no sample points in that region.  Also, the RMSE values become larger in this region. 
Note that the RMSE values at the sample points are always zero since the Kriging model is an interpolation model.  
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Figure 1. Schematic of Kriging Model. 
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B. Expected Improvement 
As mentioned above, both the estimated function value and the uncertainty of the estimated function value are 

considered to facilitate a global search.  Based on these two values, the point with the largest probability of being the 
global optimum is determined.  The probability of being the global optimum is evaluated using the expected 
improvement (EI)4 criterion. 

For minimization problems where the objective function is estimated using the Kriging model, the improvement 
I(x) over fmin, (the minimum true objective function value found so far), is defined as 
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The expected improvement is then calculated as follows: 
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where Φ(·) is the normal cumulative distribution function, and φ(·) is the normal probability density function.  By 
selecting the maximum expected improvement value point as an additional sample point, robust exploration of the 
design space and efficient search for the global optimum can be accomplished simultaneously.  

C. Proposed Kriging-based Optimization Method 
The basic outline of the proposed Kriging-based optimization method for minimizing an objective function is 

summarized below. Figure 2 shows a flowchart of the method.  
1. Use a space-filling design of experiments, 
for example, Latin Hyper cubic Sampling 
method, to obtain initial sample points for 
evaluating the true response function. From 
our practical experience, the number of initial 
sample points ns should be about 10 times the 
number of design variables m.  
2. Construct a Kriging model for 
maximizing the likelihood function.  
3. Maximize the expected improvement 
function in the design space to determine 
where to sample next.  It will be shown later 
that this process results in multimodal 
optimization problems. In this study, this 
maximization is carried out using particle 
swarm optimization (PSO).9-11  

Start

End

Initial Sampling
(ns= # of DV×10)

Construct Kriging 
Model

Optimize the EI 
Value Using PSO

Perform Analysis at the 
Optimum

Converge?
NO

YES

Add New 
Point to Data 

(ns=ns+1).

Initialize all the design 
values of particles

Use PSO to update 
particles

Calculate the EI Using 
the model

Converge?
NOYES

PSO

 
Figure 2. Flowchart of Kriging-based Optimization Method. 

4. Sample the true function at the point with 
maximum expected improvement, and update 
the Kriging model (ns= ns+1). If the objective 
function value at the new point is smaller than 
the current minimum value, update the fmin 
value.  
5. Stop if the stopping criterion is satisfied, otherwise go to step 2.  

 
 To demonstrate the proposed algorithm, a one-dimensional multimodal example is shown in Figure 3.  In this 
example it is required to find a minimum of a true response function represented by dashed lines.  The thick line at 
the bottom of the plot represents the expected improvement values.  The black dot on this thick line corresponds to 
the maximum of the expected improvement for the Kriging model at each step.  The maximum expected 
improvement determines where we should evaluate the true function for the current iteration.  The expected 
improvement tends to choose design points which are most likely to improve the accuracy of the model and/or have 
a better function value over a point with projected minimal objective functional value only (**Could you tell me 
what does this word “only” mean? **).  The optimization history shown in Fig. 3 demonstrates this behavior.  After 
the six initial points are sampled, the resulting Kriging model is not accurate and does not model the global optimum.  
However, the expected improvement function leads the optimizer to sample additional points where the global 
optimum is likely to exist.  After five iterations, the global optimum (x=0.7986) is found.  
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a) Initial Step                                                                        b) 2nd Step 
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c) 3rd Step                                                                                 d) 4th Step 
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e) 5th Step 

Figure 3. Progress of Kriging-based optimization. 

D. Convergence issues 
Although the described above Kriging-based optimization method is an efficient global search algorithm, it has 

several issues associated with it.  One of them is convergence.  We determined that the convergence is highly 
problem dependent.  For some problems, it is impossible to obtain any meaningful solutions within a practical 
number of function evaluations. For example, when a Kriging model fits sample data poorly (unlike in the case of 
the example in Fig. 3), the expected improvement might become large over a wide range of design variable values 
because almost any additional sampling point would improve the accuracy of the model.  Therefore, the maximum 
of the expected improvement for every iteration would be located at where the model is still uncertain. As a result, it 
can be difficult to find design points which actually have better objective function values over the current minimum 
value.  In contrast, when the predicted response from the Kriging model is in close agreement with the true function 
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(e.g., step 4 in Fig. 3), the expected improvement might be close to zero for the entire design space (as shown in 
Fig.3 e), which will also make it hard to pick out the candidate sampling points.  

III. Combined Kriging and Gradient-based Optimization Method 
To improve the Kriging-based optimizer’s versatility and its convergence characteristics, a new implementation 

is proposed where the Kriging based optimizer is combined with a gradient-based optimizer.  The Design 
Optimization Tools (DOT)12 software is used as the gradient-based optimizer in our case.   DOT is a commercially 
available optimization program, intended for solving a wide variety of nonlinear constrained or unconstrained 
optimization problems. We propose two variations in the following sections: one for unconstrained optimization and 
another for constrained optimization.  

A. Unconstrained Optimization 
Here the optimization strategy is 

similar to that of the Kriging-based 
optimization described in the previous 
section.  The main difference is that now 
we select two sample points at each 
iteration instead of one.  One sample point 
is selected based on the expected 
improvement criterion as described in the 
previous section.  The second is the 
minimum point of the Kriging 
approximation of the objective function.  
This minimum point is obtained by 
applying the gradient-based optimizer to 
the Kriging approximation model. The 
starting point for the gradient-based 
optimizer is the best sample point found so 
far. In this study, the gradient of the 
Kriging model is calculated by finite 
difference method.  Note that the gradient 
search for the second sample point is 
computationally inexpensive because the 
optimizer is only calling the current 
Kriging model.  Unlike finding the first 
sampling point that is based on the 
expected improvement criterion, the 
minimization of the Kriging model is a 
local search within the region about the 
best sample point.  Combining the Kriging 
optimization with the gradient-based 
optimization seeks to provide a balanced 
between global and local searches. The 
proposed approach should be able to avoid 
both a slow convergence and an excessive 
number of function evaluations.  
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Local Search (DOT)

 
Figure 4. Schematic of Kriging-DOT optimizer 

The basic outline of the combined 
Kriging-gradient based optimization 
method is summarized in Fig. 5.  Steps 1, 2, 
and 5 in Figure 5 are identical with that of the purely Kriging-based optimizer.  

Start

End

Initial Sampling
(ns= # of DV×10)

Construct Kriging 
Model

Optimize the EI 
Value Using PSO

Optimize the Kriging 
Response Using DOT

Perform Analyses at 
Two Optima

Converge?
NO

YES

Add New 
Points to Data 

(ns=ns+2)

Set Initial Point as 
Minimum Obtained So 

Far

Call DOT

Calculate Response of 
the Kriging model

Converge?
NOYES

DOT Optimizer (Local)

 
Figure 5. Flowchart of Kriging-DOT Optimizer. 

1. Use a space-filling design of experiments, Latin Hyper cubic Sampling method, to obtain an initial sample 
of the true function.  
2. Construct a Kriging model for maximizing the likelihood function.  
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3. Maximize the expected improvement function in the design space using the PSO algorithm.  Simultaneously 
minimize the approximate response of the Kriging model starting from the best sample point, using the gradient-
based optimization method.  
4. Sample the true function at the two points obtained in the previous step. Add the obtained two points to the 
set of sample points and update the Kriging model (ns= ns+2).  If either of the obtained function values is smaller 
than the current minimum value, update the fmin value.  
5. Stop if the stopping criterion is satisfied, otherwise go to step 2. 

B. Constrained Optimization 
A modification is required to deal with constrained optimization problems.  In general, constrained optimization 

is relatively unexplored aspect of Kriging-based optimization methods. Several researches have attempted to extend 
the Kriging-based optimizer to include constrained optimization.5,6,8  Generally, every constraint function is 
estimated using a separate Kriging model resulting in as many Kriging models as the number of constraints plus one. 
Since the construction of each Kriging model requires expensive maximization of the resulting likelihood function, 
an increase in the number of models results in a significant increase in the associated computational cost.  For both 
simplicity and versatility, we adopted a different strategy that requires construction of only two Kriging models: one 
for the objective function and one for the maximum constraint violation value.  

In general, a constrained optimization problem is subject to nc constraints as follows:  

 ( ) ci nig ,,10 L=<x  (12) 

where every constraint gi(x) is normalized in such that a constraint is violated when its value is positive. The 
maximum constraint violation is then defined as  

 ( ) ( )[ ]xx ii
gV maxmax =  (13) 

Note that all the constraints are satisfied when the maximum violation is less than zero.  When using a Kriging 
model to approximate the maximum constraint violation, the probability of satisfying all the constraints can be 
calculated as follows:  

 ( )( ) ( )
cni

s
VV ,,1
ˆ

10Pr max
max L=








−=<

xx Φ  (14) 

By multiplying the probability obtained from Eq. (14) by the expected improvement from Eq. (11), we account for 
the effect of the constraints on the expected improvement of the objective function.  

C. Stopping Criteria 
We formulated a stopping criterion when combining Kriging-based optimization with gradient-based 

optimization that would terminate the optimization process if any of the following conditions is satisfied: 
 
Small Relative/Absolute Change in the Expected Improvement 
This criterion implies that either the relative or absolute change in the expected improvement is less than a specified 
tolerance.  This criterion is most likely to be satisfied if the optimization procedure finds the global optimum.  
Small Relative/Absolute Change in the Actual Improvement  
When the current minimum is updated during the iteration, the improvement in the objective function is stored as 
the actual improvement.  This criterion implies that either relative or absolute change in the actual improvement is 
less than a specified tolerance.  This criterion is most likely to be satisfied if the gradient-based optimization 
program encounters a local or the global optimum.  
No Update of the Current Minimum fmin 
If a better solution has not been found for a specified number of iterations, the optimization process is terminated to 
avoid excessive computations.  
No Change in Gradient-Based optimization result 
If there is no change in the position of the approximate optimum obtained from the gradient-based optimization 
program for a specified number of iterations, the shape of the Kriging model is not changing near the current 

 
American Institute of Aeronautics and Astronautics 

 

7



optimum.  In this case, we can expect that the current optimum will not be improved and the optimization process is 
terminated to avoid excessive computations. 

IV. Optimization Results 
 The proposed combined Kriging-gradient based optimization method is aimed at responses that are expensive to 
calculate.  However, for verification purposes, it is convenient to consider test problems with objective functions 
that are computationally inexpensive to calculate.  Using these test problems, we can compare the performance of 
the proposed approach with the performance of the other optimization methods. The chosen test functions are 
nonlinear and/or multimodal.  

A. Unconstrained Problems 
 The first example is a multimodal function in two dimensions with three global optima. The function is known as 
the Branin function.14  The Branin function is defined in Eq. (15) and is shown in Fig. 6. 

 ( ) ( ) 10cos
8
111065

4
1.5, 1

2

1
2
12221 +






 −+






 −+−= xxxxxxf

πππ
 (15) 

For our example, we considered x1 ∈ [-5,10] 
and x2 ∈ [0,15].  The tree global minima at 
(3.1416, 2.2750), (9.4248, 2.4750), and (-
3.1416, 12.2750) are shown as dots in Fig.6 and 
have identical function values equal to 0.3979.  
 The Kriging model, with the initial 21 
sampling points, is shown graphically in Fig. 7.  
The Kriging model provides a very accurate 
approximation of the Branin function.  The 
optimization history for the proposed method is 
shown in Fig. 8. In Fig. 8, the orange circles 
indicate the sample point identified by 
maximizing the expected improvement, and the 
violet squares indicate the sample point 
identified by the gradient-based optimization of 
the Kriging model.  Figure 8 shows that the 
expected improvement is multimodal and its nonlinearity increases as the optimization progresses.  At the 4th step, 
the PSO algorithm fails to maximize the expected improvement.  However, the gradient-based optimizer identified a 
better point in the vicinity of one of the global minima.  It is clear that the proposed methodology explores two 
different regions parts of the design space.  

 
Figure 6. Branin Function. 

 

   
a) Sampled Points5           b) Estimated Function 

Figure 7. Plot of Fitted Kriging Model. 
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a) 1st Step                                                                                   b) 2nd Step 

 
c) 3rd Step                                                                                   d) 4th Step 

Figure 8. Plots of Expected Improvement at Each Iteration. 
Orange circles indicates the position of the point obtained 
basing on the expected improvement, and violet square 
indicates the position of DOT result at each iteration.  

 The optimization results for the Branin function is summarized in Table 1.  The optimization was terminated due 
to small changes in the expected improvement.  For comparison, we also performed the Kriging-based only 
optimization, response surface (RSA) optimization, and the following unconstrained gradient-based optimization 
methods: Fletcher-Reeves (FR) and Broydon-Fletcher-Goldfarb-Shanno (BFGS). The RSA optimization and the 
gradient-based optimizations were performed using VisualDOC15, a commercially available, general-purpose design 
optimization software system. 
 The RSA technique that we used is the following.  Initially, a sampling of a region of a design space is 
performed using one of several available designs of experiments, and then a polynomial approximation of the 
responses is constructed.  After that the optimization of the polynomial model is performed.  The evaluation of the 
true response is then conducted only at the approximate optimum.  After that the approximate optimum point is 
added to the points that are already available, response surface model is reconstructed, and optimization of the new 
response surface model is performed.  The procedure is repeated until the convergence is reached. 
 When solving our test problems we employed two types of the RSA optimization in VisualDOC, one using a 
Koshal initial design of experiments, and the second using a Simplex initial design of experiments.  As shown in 
Table 1, all optimization methods except the Koshal design of experiments found a solution that is close to the 
actual minimum, using a small number of function evaluations.  However, all the methods, except for the combined 
Kriging-gradient-based optimization method found only one of three global minima, since they are designed to 
search for one optimal solution.  Although the combined Kriging-gradient-based optimization method required more 
function evaluations than the others, it explored the entire design space and the resulting approximation captured all 
the global minima.  
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Table 1. Result of Branin Function Problem 
 Objective Total analysis Calls Active Stopping Criterion 
Actual Optimum 0.39788   
Kriging-based 0.41013 35 (=21+14) EI criterion 
Kriging-grad 0.39789 43 (=21+22) EI criterion 
RSA (Simplex) 0.39792 20  
RSA (Koshal) 0.56247 20  
BFGS 0.39813 34  
FR 0.39934 66  

 The next two test problems we considered also had two design variables.  The first problem corresponds to 
finding the equilibrium condition of a spring system, and the second represents a response with high frequency, low 
amplitude numerical noise.  The plots of the corresponding objective functions that should be minimized are shown 
in Figs. 9 and 10.  The spring system results in minimization of a function known as a ‘banana curve,’ which is 
difficult to solve using conventional optimization methods.  The noisy problem is also difficult to solve using 
gradient-based methods, due to the presence of many local minima.  Details of the optimization problems will be 
provided in the final paper.  The optimization results for these problems are shown in Tables 2 and 3.  The results 
for these two problems indicate that the combined Kriging-gradient-based optimization method is more stable than 
the other methods.  Note that the more traditional Kriging-based optimization procedure is terminated in the middle 
of the optimization process because there were no updates of the current minimum for both problems.  
 The fourth example problem is minimization of the 4-dimentional Wood’s function described by Colville.16  
Here the function value vary over a wide range and as a result, a logarithmic transformation is used to improve the 
accuracy of the Kriging model.  The results are summarized in Table 4, which the combined Kriging-gradient based 
optimization method obtained a better result than those of the RSA.  This function is highly nonlinear and as a result, 
the RSA methods failed to solve the problem.  Even when we use a log-transformed Wood’s function as an 
objective function to get results of the RSA methods more accurate, the optimization results of the RSA methods are 
still far from the actual optimum; the obtained objective function values are 46.58 for Simplex and 920.0 for Koshal. 
The combined Kriging-gradient based optimization method is thought to be well driven by the gradient-based 
optimizer.  
 The fifth example problem is to minimize the 6-dimentional Hartman function14 (description provided by 
Schonlau5). Similar to the research by Schonlau, log-transformed Hartman function is used as an objective function 
of this problem.  This function is reported to be so smooth and unimodal that gradient-based methods can find the 
global minimum.  The results of the optimization are summarized in Table 5.  The function values in Table 5 are on 
the log-transformed scale.  These results indicate that the combined Kriging-gradient based optimization method 
was able to explore the design space globally, and was more versatile and stable than the other methods due to that 
balanced search. 

 
Figure 9. Spring System Problem        Figure 10. Noise Problem 
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Table 2. Result of Spring System Problem. 
 Objective Total analysis Calls Active Stopping Criterion 
Actual Optimum -41.81   
Kriging-based -41.8075 57 (=21+36) No fmin Update 
Kriging-grad -41.808 36 (=21+15) AI criterion 
RSA -20.89 23  
BFGS/FR -41.808 68  
 

Table 3. Result of Noise Problem. 
 Objective Total analysis Calls Active Stopping Criterion 
Actual Optimum 1000.0   
Kriging-based 1024.89 44 (=11+33) No fmin Update 
Kriging-grad 1029.7 51 (=11+40) DOT result 
RSA (Simplex) 1504.1 18  
RSA (Koshal) 1017.4 22  
SQP 2715 16  
MMFD 3680.3 31  
SLP 1015.3 16  
 

Table 4. Result of Wood’s 4-D Problem. 
 Objective Total analysis Calls Active Stopping Criterion 
Actual Optimum 0.0   
Kriging-based 106.9 115 (=41+74) No fmin Update 
Kriging-grad 4.63 103 (=41+62) EI criterion 
RSA (Simplex) 51.42 50  
RSA (Koshal) 744.45 39  
BFGS 0.085 160  
FR SQP 0.011 330  
 

Table 5. Result of Hartman 6 Problem. 
 Objective Total analysis Calls Active Stopping Criterion 
Actual Optimum -1.201   
Kriging-based -1.142 119 (=51+68) No fmin Update 
Kriging-grad -1.199 163 (=51+112) AI criterion 
RSA (Simplex) -1.199 59  
RSA (Koshal) -0.793 36  
BFGS -1.200 96  
FR SQP -1.200 294  

B. Constrained Problems 
 The combined Kriging and gradient based optimization method was applied to five constrained example 
problems from the optimization literature. The details of these example problems are not mentioned here, but will be 
presented in the full paper. The five problems are (1) buckling column design problem: 2 design variables, 2 
constraints, (2) box design problem: 3 design variables, 1 constraint, (3) construction management problem: 2 
design variables, 4 constraints, (4) portfolio selection problem: 5 design variables, 4 constraints, and (5) hydraulic 
piston problem: 4 design variables, 4 constraints. The results of these five example problems are summarized in 
Tables 6-10.  Note, that both the construction management problem in Table 8 and the portfolio selection problem in 
Table 9 are maximization problems.  
 For the buckling column and box design problems (results are presented in Tables 6 and 7) with a small number 
of constraints, the combined Kriging-gradient based optimization method worked better than the other methods.  For 
the construction management problem and the portfolio selection problem all optimization methods showed 
relatively good results.  For the hydraulic piston problem, the combined Kriging-gradient based optimization method 
performed worse than the other methods. Here only one update of the minimum was performed during the 
optimization procedure. In this particular case the combined Kriging-gradient based optimization method failed to 
capture the nature of the feasible region. Most likely that was caused by the fact that the maximum violation 
function in this particular problem was highly multimodal and the resulting Kriging model estimated that behavior 
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Table 6. Result of Buckling Column Design. 
 Objective The Worst Constraint Total analysis Calls Active Stopping Criterion
Actual Optimum 0.4 0   
Kriging-grad 0.3999 0.0003 30 (=21+9) EI criterion 
RSA 0.493 -4.55 17  
SQP 0.3999  35  
SLP 0.4003  25  
MMDF 0.3999  272  

 
Table 7. Result of Box Design Problem. 

 Objective The Worst Constraint Total analysis Calls Active Stopping Criterion
Actual Optimum 12.0 0   
Kriging-grad 11.98 0.003 46 (=33+13) EI criterion 
RSA 12.98  37  
SQP 13.10  54  
SLP 12.00 0 44  
MMFD 12.00 0 38  

 
Table 8. Result of Construction Management Problem. 

 Objective The Worst Constraint Total analysis Calls Active Stopping Criterion
Actual Optimum 63333 0   
Kriging-grad 63527 0.003 29 (=21+8) EI criterion 
RSA 63264  9  
SQP 63498 0 7  
SLP 63324 0 33  
MMFD 63333 0 34  

 
Table 9. Result of Portfolio Selection Problem. 

 Objective The Worst Constraint Total analysis Calls Active Stopping Criterion
Kriging-grad 0.279 0.002 119 (=51+68) No fmin Update 
RSA (Koshal) 0.271 -4.55 17  
RSA (Simplex) 0.294  37  
SQP 0.296  49  
SLP 0.298 0 36  
MMFD 0.297 0 95  

 
Table 10. Result of Hydraulic Piston Problem. 

 Objective The Worst Constraint Total analysis Calls Active Stopping Criterion
Actual Optimum 1085.5 0   
Kriging-grad 1175.5 -0.015 103 (=41+62) No fmin Update 
RSA 1113.3  15  
SQP 1085.5  41  
SLP 1085.5  57  
MMFD 1085.5  39  

 

rather poorly.  To improve the performance of the combined Kriging-gradient based optimization method, it is 
possible to include more feasible sample points in the initial sample data set. 
 We may conclude that for the constrained problems the combined Kriging-gradient based optimization method 
needs more improvements particularly, in constraint handling.  

V. Conclusions 
In order to develop a practical and general-purpose Kriging-based optimizer for general design problems of 

complex multidisciplinary systems, a new implementation of the Kriging-based optimization method, the combined 
Kriging and gradient-based optimization method is proposed. Several stopping criteria are explored to prevent 
premature convergence on one hand and to avoid unnecessary excessive computations on the other hand. The 
combined Kriging and gradient-based optimization method has a balance of both the global search characteristics of 
the Kriging-based optimization and the local search characteristics of the gradient-based optimization.  We applied 
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the proposed method to both unconstrained and constrained example problems.  For the unconstrained problems, the 
proposed method is more versatile and stable than conventional optimization methods. For the constrained problems 
the proposed method was not as good as for the unconstrained problems. More research is required to adapt the 
proposed method to the general constrained optimization problems. 

The final paper will contain more details on the test problems presented above as well as more sophisticated test 
problems.  The latest research on the proposed algorithm will also be presented. 

Acknowledgments 
This work has been performed as the first author’s internship program at Vanderplaats Research & Development, 

Inc. The first author gratefully acknowledges support from Dr. Garret N. Vanderplaats.  

References 
1Welch, W.J., Buck, R.J., Sacks, J., Wynn, H.P., Mitchell T.J., and Morris, M.D., “Screening, Predicting, and Computer 

Experiments”, Technometrics, Vol. 34, No. 1, 1992, pp. 15-25.  
2Simpson, T.W., Mauery, T.M., Korte, J.J., and Mistree, F., “Kriging Models for Global Approximation in Simulation-Based 

Multidisciplinary Design Optimization,” AIAA Journal, Vol. 39, No. 12, 2001, pp. 2233-2241.  
3Martin, J.D., Simpson, T.W., “Use of Kriging Models to Approximate Deterministic Computer Models,” AIAA Journal, Vol. 

43, No. 4, 2005, pp. 853-863.  
4Jones, D.R., Schonlau, M., and Welch, W.J., “Efficient Global Optimization of Expensive Black-Box Functions,” Journal of 

Global Optimization, Vol. 13, 1998, pp. 455-492.  
5Schonlau, M., “Computer Experiments and Global Optimization,” Ph.D. thesis, University of Waterloo, Waterloo, Canada, 

1997.  
6Sasena, M.J., “Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging 

Approximations,” Ph.D. dissertation, University of Michigan, MI, 2002.  
7Jeong, S., Murayama, M., and Yamamoto, K., “Efficient Optimization Design Method Using Kriging Model,” Journal of 

Aircraft, Vol. 42, No. 2, 2005, pp. 413-420.  
8Jeong, S., Yamamoto, K., and Obayashi, S., “Kriging-Based Probabilistic Method for Constrained Multi-Objective 

Optimization Problem,” Proceedings of AIAA 1st Intelligent Systems Technical Conference, 2004.  
9Venter, G., and Sobieszczanski-Sobieski, J., “Particle Swarm Optimization,” AIAA Journal, Vol. 44, No. 8, 2003, pp. 1583-

1589.  
10Fourie, P.C., and Groenwold, A.A., “The Particle Swarm Optimization Algorithm in Size and Shape Optimization,” 

Structural and Multidisciplinary Optimization, Vol. 23, No. 4, pp. 259-267.  
11Venter, G., and Sobieszczanski-Sobieski, J., “Multidisciplinary Optimization of a Transport Aircraft Wing Using Particle 

Swam Optimization, ”Proceedings of 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2002.  
12DOT, Design Optimization Tools, Software Package, Ver. 5.5, Vanderplaats Research & Development, Inc., Colorado 

Springs, CO.  
13Vanderplaats R&D, Inc., DOT Users Manual, 2001.  
14Törn, A. and Žilinskas, A., Global Optimization, Springer Verlag, Berlin, 1989.  
15VisualDOC, Software Package, Ver. 5.1, Vanderplaats Research & Development, Inc., Colorado Springs, CO.  
16Colville, A.R., “A Comparative Study of Nonlinear Programming Codes,” Technical Report Mo. 320-2949, IBM New 

York Scientific Center, 1986.  


	Nomenclature
	Introduction
	Overview of Kriging-based Optimization Method
	Kriging model
	Expected Improvement
	Proposed Kriging-based Optimization Method
	Convergence issues

	Combined Kriging and Gradient-based Optimization Method
	Unconstrained Optimization
	Constrained Optimization
	Stopping Criteria

	Optimization Results
	Unconstrained Problems
	Constrained Problems

	Conclusions
	Acknowledgments
	References

