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Efficient Algorithm for Numerical Airfoil Optimization
Garret N. Vanderplaats*

NASA Ames Research Center, Moffett Field, Calif.

A new optimization algorithm is presented. The method is based on sequential application of a second-order Taylor's
series approximation to the airfoil characteristics. Compared previous methods, design efficiency improvements of
more than a factor of 2 are demonstrated. If multiple optimizations are performed. the efficiency improvements are
more dramatic due to the ability of the technique to utilize existing data. The method is demonstrated by application
to subsonic and transonic airfoil design but is a general optimization technique and is not limited to a particular
application or aerodynamic analysis. 

Introduction
Since 1974, the use of numerical optimization techniques in airfoil design has received considerable attention. The
general problem to be solved is stated as 

Minimize F(X) (1)

Subject to

(2)

where X is a vector containing the design parameters which define the airfoil shape. The function F(X) is the
objective function to be minimized, such as the drag coefficient CD. If it is desired to maximize some function, such
as lift, this is done by minimizing the negative of the function; e.g., if the lift coefficient CL is to be maximized, we
minimize -CL. The functions gj(X) define constraints which the design must satisfy. These may include, for example,
limits on lift, pitching moment, thickness, and camber. 

Numerical optimization techniques provide an efficient and versatile tool for the solution of this design
problem. A general description of numerical optimization techniques may be found in Ref. 1. In airfoil design
applications, the basic approach has been to couple an aerodynamic analysis code with an optimization code to
achieve the automated design capability. Most of this work has been directed toward the application of these
techniques to a wide variety of design problems while at the same time using increasingly sophisticated and time-
consuming analysis programs. Very little effort has been directed toward improving the efficiency of the automated
design process. Rather, the principal improvement has been in the method of defining the airfoil. In Refs. 2 and 3,
polynomials were used to define the airfoil shape. with the coefficients being the design variables. In Refs. 4 and 5,
and in subsequent work, these polynomials were replaced by the use of more general analytical or numerically
defined shape functions. The effect of this was an efficiency improvement of more than a factor of 2, together with
improved airfoil definition.4 However, with the large computer times associated with sophisticated analysis
programs, major efficiency improvements are still needed if numerical airfoil optimization is to remain an
economically feasible design approach.

For purposes of this discussion, efficiency is measured by the number of times the aerodynamics program is
called for a complete analysis. This typically accounts for more than 95% of the computer resources. This measure of
efficiency is independent of the aerodynamic analysis program and is therefore considered a good measure of design
cost, using a given aerodynamics program. A technique is presented here which improves design efficiency by a
factor of 2 or more compared with Ref. 4.
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For purposes of this discussion, efficiency is measured by the number of times the aerodynamics program is
called for a complete analysis. This typically accounts for more than 95% of the computer resources. This measure of
efficiency is independent of the aerodynamic analysis program and is therefore considered a good measure of design
cost, using a given aerodynamics program. A technique is presented here which improves design efficiency by a
factor of 2 or more compared with Ref. 4.

To understand the difference in methods, the previous approach to airfoil optimization first will be briefly
described. The new design method then will be presented and will be demonstrated by three design examples. A
more detailed description of the new method may be found in Ref. 6. Finally, possible future extensions and
enhancements will be discussed.

Previous Design Method
Assume that the airfoil is defined by the relationship: 

(3)

where Y is a vector containing airfoil upper and lower coordinates and the Yi define shape functions (called basis
vectors) which themselves may be airfoils. The coefficients a1, a2, ..., an. are referred to as participation coefficients.
These coefficients form the components of the vector of design variables in Eq. (1):

(4)

Beginning with an initial design X0 a typical numerical optimization program iteratively updates the design such that
at iteration q + 1

(5)

The vector Sq is referred to as a search direction in the n-dimensional design space. The scalar α∗ is found by
interpolation to yield the greatest design improvement subject to the inequality constraints. Using gradient-based
optimization techniques, determination of   requires calculation of the gradient of the objective and constraint
functions. In airfoil design this is normally done by finite difference, so that n complete analyses are required each
time Sq is calculated. Determination of α* requires (typically) three additional analyses. Present optimization
efficiency requires approximately 10 design iterations (q = 1, 2, ... , 10) so that one design requires 10n + 30 complete
aerodynamic analyses.1

At the present time, most airfoil optimization is performed by coupling the aerodynamics program to the
optimization program as shown in Figure 1. Each time the optimization program defines a new design, either for
finite-difference gradient computations or for determining α*,the aerodynamics program is called for a complete
analysis. During optimization, at iteration q, very little information from previous iterations is used;
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Figure 1  Previous program organization.

It might be argued intuitively that all calculated information should be of value in guiding the optimization process.
Furthermore, in a design study, numerous optimizations are usually performed. For example, one optimization may
be done to minimize CD with constraints on CL and, later, another optimization done to minimize CM with
constraints on CL and CD. It may be expected that, because many airfoils were analyzed during the first optimization,
a second optimization at the same flight condition should utilize this available information. One way to do this is to
approximate the required functions using available information. This provides explicit functions which can now be
optimized independent of the time-consuming aerodynamic analysis program. Aerodynamic analysis is still used to
improve the approximation, leading to a precise solution. The general procedure for doing this is outlined in the
following section.

New Design Method
The approach used here is to develop a Taylor's series expansion of the various performance and geometric

parameters based on existing data or on data developed earlier in the optimization process. Consider the second-order
Taylor's series expansion in matrix form for an arbitrary function:

(6)

where

 

 = vector of first partial derivatives

[H] = matrix of second partial derivatives (Hessian matrix)

X = vector of design variables; in this case, the coefficients of the airfoil basis shapes

 = approximate function

The function  is used to denote any pertinent parameter such as CL, CD, CM, t/c, etc. 

Assume that F(X) is known for numerous designs defined by different Xk. Then the unknowns in Eq. (6) are the
components of  and [H]. These can be calculated as a set of linear simultaneous equations. If excess data are
available, a weighted least-squares fit is used. 
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Having obtained the approximating functions, they can be used during optimization, rather than calling the
aerodynamics program for precise functions. When the optimum airfoil has been found, based on this approximation,
the airfoil is analyzed precisely. The results are added to the data set, and new approximating functions are defined.
Optimization is then performed using these new functions and the process repeated until convergence is achieved. 

The general program organization is shown in Figure 2. Note that the optimization program never calls the
aerodynamic analysis program, but instead optimizes the approximating functions. Therefore, the efficiency of the
optimization program itself is of secondary importance because evaluation of the approximate functions as well as
the gradient of these functions is quite rapid. It is noteworthy that a similar design approach has been used
successfully for structural optimization by Schmit and Miura.7 Only a second-order approximation is used because
higher-order approximations 1) would require excessive data, 2) would tend to model noise in the data, and 3) have
been found to be unnecessary. 

Figure 2  New program organization.

Earlier work by Moses8 in structural optimization has utilized sequential linear approximations. This is considered
unacceptable for airfoil optimization because the number of binding constraints at the optimum is usually less than
the number of design variables, leading to an unbounded solution. This possibility still exists using second-order
approximations but is considerably reduced. To insure boundedness of the approximate optimization, bounds are put
on the individual design variables to limit the design changes to some reasonable value, say 50% change in airfoil
thickness. This insures a solution to the approximate optimization problem while allowing for rapid convergence to
the precise optimum. 

In practice, the new method begins with only a first-order approximation to the first design variable. This
requires two precise aerodynamic analyses to begin the optimization process. Having solved the approximate
optimization with respect to a1 the proposed airfoil is analyzed precisely and the results added to the data set. A first-
order approximation is then defined with respect to a1 and a2 and the approximate optimization is repeated. This
process is continued until at least a first-order expansion with respect to all design variables has been done. Beyond
that, the process is continued until the same design has been achieved on two consecutive approximate optimizations,
at which point the design process is said to have converged to the solution. 

To provide a second-order Taylor series expansion requires 1 + n + n(n+ 1)/2 separate analyses. Therefore,
assuming that only a few analyses are required beyond that required for a second-order approximation, the new
method will be competitive for designs defined by fewer than 20 design variables. More importantly, if several
optimizations are to be performed, data developed as part of one optimization can be used in subsequent
optimizations, thus drastically reducing the total number of aerodynamic analyses. 
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Because arbitrary data are used to calculate the unknown coefficients in Eq. (6) (as compared to small finite-
difference perturbations), the Taylor's series coefficients are themselves approximate, becoming increasingly precise
as additional data are included in the least-squares fit. The efficiency of this new approach, therefore, hinges on the
assumption that the pertinent aerodynamic coefficients can be modeled reasonably well in the region of the optimum
by a second order Taylor's series expansion. In this regard, it should be noted that this is the same assumption on
which many of the more powerful optimization algorithms are based.9 It will be shown by example that this is a good
assumption.

Design Algorithm

Having the capability of developing the approximate Taylor's series expansion of the various aerodynamic
geometric functions, the expansion is incorporated into an optimization algorithm as follows: 

1) Given k initial independent designs, k > 2 

2) Create the Taylor's series expansion about the current “best” design 

3) Number of design variables, NDV = min. (k, n)

4) Set limits on the design variables, say X  = 0.8X0 and Xu = 1.2X0 

5) Optimize the approximating functions 

6) Analyze the proposed optimum 

7) Add results to data set; set k = k + 1

8) If k < n go to step 2 

9) Check convergence 

10) If satisfied, print final results; otherwise go to step 2 

A FORTRAN computer code was written for this technique; a block diagram of the major operations is shown in
Figure 2. The CONMIN program10 was used for the optimization capability. In the following section, design
examples are presented to demonstrate the efficiency of the method. 

Design Examples
Examples are presented here to identify the generality and efficiency of approximation concepts as applied to airfoil
optimization. Four existing airfoils are used as the design basis vectors in Eq. (3). These are the NACA 2412, NACA
641-412, NACA 652-415, and the NACA 642-A215 airfoils. The coordinates are defined at 50 points along the upper
and lower surfaces. Two additional basis vectors are used to impose the geometric boundary conditions at the trailing
edge of the airfoil. These are Yus=X/C, Y s = 0, and Yus = 0, Y s = -(X/C). The shapes defined by these six basis
vectors are shown in Figure 3. These basis vectors are the same as those used in Ref. 4. For consistency, the same
aerodynamic analysis code11 was also used here. Three of the design examples of Ref. 4 are solved below; two of
these examples were also presented in Ref. 3. 

Table I compares the efficiency of the present method with that of previous methods. The computer CPU time,
on a CDC-7600 computer, for one analysis is listed to indicate the cost of the design using the aerodynamic analysis
code of Ref. 11. Total CPU time is the CPU time per analysis times the number of analyses.

Example 1: Lift Maximization, M = 0.1, α = 6 deg 

Figure 4 shows the results of optimization of an airfoil for maximum lift. The design constraints are listed on the
figure and are the same as those of Refs. 3 and 4. This optimization required 19 aerodynamic analyses, compared to
103 analyses reported in Ref. 3 and 44 analyses reported in Ref. 4. While it may be argued that this airfoil is
impractical, it must be remembered that it mathematically satisfies the design constraints. Also, the lift coefficient,
CL = 1.144 obtained here is better than the CL = 1.106 obtained before. The fact that this airfoil was not obtained
using the previous methods suggests that the present method is numerically better conditioned for optimization.
Furthermore, these results were obtained using fewer than half the number of aerodynamic analyses used in Ref. 4.
At the optimum, all constraints were critical except the limit on pressure coefficient.

The quality of the approximation to the lift coefficient may be judged from Fig. 5. Because there are four
independent design variables, the full second-order Taylor's series expansion of the functions requires 15 analyses. It
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is intriguing to note that on the 16th analysis and beyond, the approximation for this case is quite precise. This
suggests that the analysis of low-speed airfoils can be approximated quite well by a second-order Taylor series
expansion.

Figure 3  Basis shapes.

Figure 4  Example 1: lift maximization M = 0.1, 
α = 6 deg.

Figure 5  Optimization history for Example 1
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Example 2: Life Maximization, M=0.75,  α = 0 deg 

Although optimization using sequential approximations works well for low-speed airfoils, it may be expected that the
technique would not be adequate for high-speed applications where the nature of the flow field about the airfoil can
be quite sensitive to small changes in the airfoil shape. To study this, examples from Refs. 3 and 4 were solved using
the present method. Here, the lift coefficient was maximized subject to a constraint on wave drag. A value of CL =
0.4211 was obtained after 27 analyses, compared to CL =0.3884 obtained in 143 analyses in Ref. 3, and CL = 0.4188
obtained in 70 analyses in Ref. 4. The results are shown as Example 2A in Figure 6. Using the present method, the
optimization continued to mathematically improve the airfoil and terminated after 48 analyses, yielding the airfoil
shown in Figure 7 as Example 2B. Note the significant changes in pressure distribution between Figs. 6 and 7. The
comparison of approximate and precise values of CL and CD is shown in Fig. 8. The second-order approximation
appears quite good as long as the nature of the aerodynamic now field does not change. Difficulty is encountered
when design perturbations cause a change in the number of shocks from one to two or two to three. In this design
example, the values of CL and CD agree well at 27 analyses. The design continues to improve through analysis
number 37, at which point designs were considered which had a mild reverse curvature on the upper surface near the
leading edge. This results from the inability to properly model a supercritical airfoil using the four NACA basis
airfoils. The optimization was able to utilize these data effectively to redirect the optimization process, leading to the
final converged solution. At the optimum, both constraints were critical. In a practical design situation, it would be
desirable at this point to add other basis vectors that represent supercritical airfoils, remembering that the 48 analyses
already obtained provide useful data for the expanded optimization.

Figure 7  Example 2B: lift maximization, M = 0.75, 
α = 0 deg. optimum design.

Figure 6  Example 2A: lift maximization, M = 0.75, 
α = 0 deg. design after 27 analyses.
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Example 3: Wave Drag Minimization, M = 0.75,  α = 0 deg

To demonstrate the efficiency of the present method when multiple optimizations at the same flight condition are
performed, a drag minimization example of. Ref. 4 was solved. The 48 analyses performed to solve Example 2 here
were used as initial data. In Ref. 4, the optimum airfoil from the previous design was used as a starting point for this
design. In the present study, the 27th analysis (Figure 6) was used as the nominal design about which the first Taylor's
series expansion was performed. An optimum design of CD = 0.0009 was obtained using only two additional
analyses. The resulting airfoil is given as Example 3A in Figure 9 and in Table 1. This result compares to an optimum
CD = 0.0007 obtained previously using 44 aerodynamic analyses. As an additional exercise, this design was repeated
beginning with the 48th analysis of Example 2 as the initial nominal airfoil. An optimum CD = 0.0003 was obtained
using 4 additional analyses. This design, Example 3B, is presented in Figure 10 and in Table 1. As seen from the
figures, Examples 3A and 3B represent quite different airfoils, although the actual calculated wave drag is negligible
in each case.

Figure 8  Optimization history for Example 2

Figure 9  Example 3A: drag minimizatino, M = 0.75, 
α = 0 deg. beginning with analysis no. 27.
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Figure 10  Example 3B: drag minimization. M = 0.75, α = 0 deg. beginning with analysis no. 48.

Table 1: Design Information

Number of analyses

Example Comment Ref. 3 Ref. 4

New 
method

CPU time 
per analy-

sis, s

1 Initial design 1 1 1 4

1 Optimum design 103 44 19 4

2,3 Initial design 1 1 1 16

2A After 27 analyses 143 42 27 16

2B Optimum design 143 70 48 16

3A Initial analysis 27 ... 44 2 16

3B Initial analysis 48 ... 44 4 16
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Concluding Remarks
An optimization procedure, which efficiently solves the airfoil design problem, has been presented. An important
feature of the method is that the sensitivity of the resulting airfoil to small changes in the design variables is
automatically provided in the form of the Taylor's series coefficients. In view of the efficiency of this method, further
development and extensions are warranted in several cases. 

The computer program written for this study is considered a preliminary research program. This will be
rewritten as a general-purpose optimization code for public release.

The examples presented here utilized Taylor's series expansions with respect to the geometric sizing variables
a1 - an. These expressions can just as easily include Mach number and angle of attack. In this way, off-design fight
conditions can be included in the optimization process without requiring precise aerodynamic data at every night
condition. 

Example 3 demonstrated the extreme design efficiency possible by using existing data for optimization. This
motivates the development of design-oriented data storage and retrieval systems so that the ever increasing body of
available aerodynamic data can be easily utilized in design. Such a data bank should include experimental as well as
analytical data, be easily accessible, and be transportable between computer facilities. 

An important extension of the design capability presented here would be to the design of airfoils for specified
pressure distribution. One approach is to utilize the second-order Taylor's series expansion of pressure coefficients.
Using Newton's method to solve the nonlinear system of equations provides the desired pressure coefficients. The
process would be applied repetitively until convergence. The deficiency in such an approach is that the resulting
airfoil may be geometrically unrealistic. Future extensions would make use of the numerical optimization techniques
to obtain the airfoil most nearly producing the desired pressure distribution while satisfying realistic constraints. The
general goal of the work presented here, as well as its proposed extensions. is to develop a distributable computer
program and data base which the practitioner can apply to his particular design problem.
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