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Design optimization technology has advanced a great deal over the last four 
decades so that, today, we can apply optimization to a very wide range of design 
tasks.  Formal methods for considering multiple disciplines in the optimization 
process has not progressed as well due to the complexity of the task as well as the 
complexity of the methods proposed.  The purpose here is to define a general design 
optimization approach that closely models traditional design methods while making 
maximum use of optimization.  While it cannot always be demonstrated that a true 
optimum will result using the EMDO method, it is clear that this method will 
enhance the design process and lead to improved designs without dramatically 
changing the way engineers work.   

I. Nomenclature 
F(X) = System objective function 
Fi(X,Yi) = Objective function for sub-system i  
gj(X) = j-th system level inequality constraint 
gj(X,Y

i
) = j-th inequality constraint for sub-system i 

m = Number of system level constraints 
mi = Number of constraints for sub-system i 
n = Number of system level design variables 
ni = Number of design variables for sub-system i 
X = Vector of system level design variables 

L

iX  = Lower bound on system level design variable i  
U

iX  = Upper bound on system level design variable i 
Yi = Vector of local design variable for sub-system i 

iL
iY  = Lower bound on design variable i of sub-system i 
iU

iY  = Upper bound on design variable i of sub-system i 

I. Introduction 
 

ultidiscipline design is as old as engineering itself.  Indeed, given enough time and money, engineers 
create excellent, if not optimum, multidiscipline systems.  Design methods have evolved as they have 

because they work.  Therefore, in an optimization environment, it makes sense to learn from these 
traditional methods and apply optimization as a tool to improve design quality and increase productivity.  

Research in engineering design optimization has progressed greatly since its inception over 45 years 
ago with the classic paper by Schmit1. This has led to a mature technology for use in a significant 
percentage of design tasks, and numerous commercial optimization products are available today.  However, 
the majority of applications are for single disciplines such as structures or airfoils.  

Multidiscipline design optimization (MDO), where more than one discipline are included in the 
optimization process has been a goal almost from the beginning. Indeed, in 1964, Schmit and Thornton 
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optimized a wing considering both aerodynamics and structures2. In the 1970s conceptual aircraft design 
was performed by including all key disciplines in the optimization problem (ref. 3 plus numerous 
references listed there). Because only basic aircraft parameters were designed and the analysis was based 
on simple physics, all design variables were considered simultaneously. 

As optimization tasks grew in size and complexity, it became apparent that the direct approach of 
simply coupling the analyses with an optimizer was not tractable. This was due to the large number of 
variables involved as well as the coupling among the disciplines. 

An important step in MDO was offered by Sobieszczanski-Sobieski4 in 1982, when he recognized and 
formally dealt with the interactions among disciplines where more than just a few system and sub-system 
variables were considered. 

While this method was mathematically elegant, several difficulties were encountered in it’s 
implementation. First, it effectively required extensive chain rule differentiation which could generate poor 
answers due to numerical noise, particularly if functions were evaluated iteratively (functions themselves 
were noisy). Second, it required sensitivities of the optimum sub-systems5. These can be shown to be 
directional derivatives, especially if sensitivities with respect to design variables are needed6. This is easily 
demonstrated by a two variable function space where the optimum has two active constraints. Increasing a 
variable will follow one constraint while decreasing it will follow the other. Because the sensitivity is the 
vector product of either of these two distinct search directions with the gradient of the objective function, 
the optimum sensitivity is clearly not unique.  Finally, and most important, the method was viewed as 
complicated, requiring special expertise to use. This is a key issue in gaining widespread use of 
optimization because today’s engineers demand “turn key” solutions. Regardless, and perhaps because of 
these issues, reference 4 generated an extraordinary amount of research in MDO over the past twenty five 
years with a multitude of complimentary and competing ideas7, 8. This has led to the most recent method 
called Bi-Level Integrated System Synthesis, or “BLISS” 9. 

The BLISS algorithm is described in some detail in reference 9 and need not be reproduced here. 
However, the basic philosophy can be simply described. 

In the BLISS algorithm, the overall system is comprised of system variables and sub-system variables. 
For example, system variables may include overall geometry of a wing, such as aspect ratio, thickness-to-
chord ratio, sweep, etc. The structures sub-system will typically include member sizing variables, while the 
aerodynamic sub-system may include empennage sizing for controllability, and aerodynamic shaping of the 
leading edge (since that surface is often not included directly in the structural optimization). The sub-
systems clearly interact since the deformed shape defines input to the aerodynamics module and the 
resulting air loads provide input to the structures module. In past MDO algorithms, these interactions were 
handled via communication between sub-modules. In the BLISS algorithm, all coupling is dealt with by the 
system control.  Various formulations are used to deal with this coupling.  Important features of this 
method are that it separates design variables into system and sub-system variables, and it allows sub-system 
groups to work with considerable independence.  In these respects, it more closely parallels how design is 
traditionally performed than do previous MDO methods. 

Notwithstanding the positive aspects of the various MDO methods offered in the past 25 years, they 
remain rather complex in their implementation.  This raises questions of how robust such methods can be 
and also how well they will be received by the general design community. 

The goal here is to take a fresh look at Multidiscipline Design Optimization.  The source of the present 
method is the observation that most progress in such areas as structural optimization over the past 30 years 
has not come from algorithmic complexity but by observing and copying what good designers have always 
done.  Basis vectors10 and formal approximations11-15 are examples where substantial progress has come 
through careful problem formulation utilizing techniques that have long been known and understood by 
practicing engineers. 

The method presented here can be summarized very simply:  “Do what we’ve always done but take 
advantage of the immense computer power available for speed and use optimization at every step to reduce 
design time and improve quality.”  Having said that, there will be some techniques that we can use in an 
optimization environment to simplify the overall process and improve the probability of achieving the true 
optimum.  Notably, we can often eliminate iterative processes in favor of adding constraints, thus using the 
optimizer to reduce computational time. 



Nominal Vehicle: F-5A
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Figure 1. Wing weight Versus Aspect

 
 
Figure 2.  All Wing Remotely Piloted Vehicle
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Figure 3.  Design Space Using Wing Loading as a 
Design Variable 
 
 
 
 

1) Aircraft Design 
Aircraft design is perhaps the most commonly identified multidiscipline design task.  Here, 

aerodynamics, structures, propulsion, trajectory, controls and other disciplines interact within the overall 
system.  In the late 1960s and 1970s, numerous computer programs were created for conceptual aircraft 
design and many of these utilized optimization3.  Though these efforts are seldom referenced and almost 
never referred to as MDO, they were indeed early MDO efforts.  Some of these efforts continue even today 
and others are being created by various aircraft companies.  The key to most of these efforts was that only a 
few system design variables were considered and (in most cases) the disciplines did not perform 
optimization at the local level.   

This early work is important, not so much for the results it produced as much as for some important 
lessons learned.  First of all, the underlying analysis must properly model the true physics or optimization 
will generate unrealistic designs.  Second, the choice of design variables is important and third, time 
consuming design iterations can often be replaced by constraints. 

As an example of the importance of modeling 
physics, Figure 1 shows the effect of aspect ratio on 
wing weight.  Each equation plotted here was created 
based on historical data by a different weights engineer 
and each was shown to correlate well with the data 
used.  Note that case one shows that, historically, as 
aspect ratio has increased, wing weights actually 
decreased while case two shows almost no change and 
the other cases show that wing weight increases with 
aspect ratio as expected.  When the wing weight was 
estimated using case one, the optimizer increased the 
wing aspect ratio on the F-5 aircraft test case to its 
upper bound (set arbitrarily to 100!), clearly contrary to 
what is expected based on simple physics. 

Figures 2 through 4 demonstrate the importance of 
choosing the proper design variables.  Figure 2 is an 
oblique flying wing where a key constraint is that the 
wing has sufficient volume to contain fuel and 
equipment.  Traditionally, wing loading (gross take-off 
weight divided by wing area) is considered to be a basic design variable.   Figure 3 shows the design space 
in terms of the wing thickness-to-chord ratio and wing loading.  Note that the optimum is poorly defined 
and the design space is actually non-convex (suggesting the possibility of relative minima).  Now consider 
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Figure 4.  Design Space Using Wing Area as
a Design Variable 
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Figure 5. The Ship Design Spiral 

a simple change of variables where we let the actual 
wing area be the design variable instead of wing 
loading.  Figure 4 shows the design space for this 
case where now the design space is convex and the 
optimum is well defined.  In each case, the optimum 
design is the same but in the second case it is much 
more easily found computationally. 

Finally, consider the iterative process of 
calculating the gross take-off weight of an aircraft to 
fly a specified mission.  The general design approach 
is; 

For a specified fuselage length and diameter, 
maximum thrust, wing aspect ratio, wing area, wing 
thickness-to-chord ratio, etc. 

 
 

1. Estimate the gross take-off weight. 
2. Call the geometry module to determine volume and space requirements. 
3. Call the trajectory module to “fly the mission” and calculate fuel used in each leg. 

a. Call aerodynamics module. 
b. Call propulsion module. 

4. Add up all fuel usage for the mission. 
5. Call the mass properties module to estimate all component masses. 
6. Add all component masses plus fuel to provide a calculated gross take-off weight. 
7. Update the estimated gross take-off weight and iterate until the calculated weight equals the 

estimated weight. 
Of course this is a very simplistic outline of the design process but it is sufficient to consider some key 

points.  First, the geometry module should not actually perform sizing of the fuselage to contain passengers, 
etc. and/or wing to contain fuel.  It should calculate the needed dimensions and volumes to be compared 
with the dimensions and calculated volumes specified by the system design variables.  Then the optimizer 
will adjust the specified sizes to provide the needed volumes.  Secondly, if the gross weight is taken as an 
independent design variable, the difference between the estimated gross weight and the calculated gross 
weight can simply be taken as an equality constraint, eliminating the iteration of step 7 above3  Thus, at the 
end of the optimization process, these two values will agree without all of the intermediate iterations.  In 
fact, in most cases, this can be treated as an inequality constraint with the calculated weight required to be 
less than or equal to the gross weight and the constraint will naturally be satisfied with equality at the 
optimum. 

From this simple discussion, it is clear that the design process can be significantly improved with the 
use of optimization.  Here, the individual modules normally do not perform any sub-optimization tasks 
though that would certainly be allowed. 

2) Ship Design 
The ship synthesis process is very similar to that of aircraft 

synthesis. Here the “design spiral” shown in Fig. 5 represents the 
traditional synthesis process. Typical design variables are length 
(length between perpendiculars), width (beam), height, and 
prismatic and midship section coefficients. The prismatic 
coefficient relates the volume of the hull to the rectangular 
volume enclosed by the outer dimensions, and the midship sec-
tion coefficient relates the cross section to that of a rectangle 
containing that cross section.   

The design spiral is similar to the aircraft sizing process, so 
that at each step the appropriate information is calculated and 
there may be internal iterations to satisfy volume, performance, 
and stability requirements. The subsequent iterations through the 
spiral represent iterative refinements, just as in the aircraft 



synthesis process.  
When using optimization for ship design, we remove the sizing functions from the analysis and create a 

series of constraints to ensure that volume, power, and stability requirements are met. Once again, in doing 
this we greatly simplify the analysis while transferring the design decisions to the optimizer. Typical design 
objectives are now to minimize ship displacement, maximize cruise speed, or minimize fuel consumption.  
In reference 16 an established ship synthesis model18 was modified to create the desired optimization 
capability. Table 1 gives the results of the optimization of a modern naval ship for maximum displacement.  
 
Table 1  Ship Synthesis Results 

 
 

 
 
 
 

 
 
 

For the initial design, several constraints were badly violated and the optimization overcame this to 
achieve the design shown. Reference 16 also presents examples of trade-off studies to indicate the 
versatility of the capability. Here again we are reminded that the analysis is based on first principles and 
that the results must be carefully checked by competent specialists.  An interesting outcome of this study 
was that it produced an optimum very close to that obtained in the traditional way.  The difference was that 
the traditional approach required multiple years and thousands of combinations of the design variables 
while the optimization task required under one day.  Of course several months were required to convert the 
original software to use with optimization but after that, the combined capability could be used many times. 

3) General Observations 
The above cases of aircraft and ship synthesis are but two examples where multidiscipline systems are 

routinely designed, normally without optimization.  It should be noted that optimization could be used at 
any point in these design processes, whether for a single discipline, a group of disciplines or for the entire 
system. 

It is often argued that applying optimization to the individual disciplines will not produce an optimum 
system.  That is, the optimum system is not the sum of optimum components.  This has been stated so often 
that, today, it is almost accepted as gospel.  

The standard example to prove this is that if an aerodynamicist and a structural engineer design the 
same wing, it will be totally different.  The optimum aerodynamic design will be thin, highly swept and 
high aspect ratio while the optimum structural design will be thick, unswept and short.  However, if the 
thickness, sweep and aspect ratio are treated as system design variables and the range (for example) of the 
aircraft is maximized, the optimum trade-off between aerodynamic efficiency and structural mass will 
automatically be accounted for.  Therefore, the key issue is that of choosing system level design variables 
and determining what subsystem variables the disciplines are allowed to change.  In this case, the 
aerodynamic shape would be defined by system variables while internal structural dimensions of wing skin, 
spar and rib dimensions may be determined as a sub-optimization task.  Of course, there remains 
interaction between aerodynamic loads and structural deformations but these may be dealt with in the 
traditional iterative fashion. 

Indeed, if all variables for all disciplines could be designed simultaneously as system variables, we 
should find the true optimum.  Therefore, the issue becomes that of separating system variables that 
generate a true optimum from sub-system variables that may be designed independently but are implicit 
functions of the system variables. 

Even within a given discipline, we can argue that if structural optimization is applied to a single rib at a 
time, a wing made up of these ribs will not be optimum18.  This is because force redistribution alters the 
loads on the ribs.  Again, if the entire wing is designed, or at least the entire structural box is designed, this 
issue becomes irrelevant.  Because we can efficiently deal with thousands of design variables (millions of 
design variables in the case of topology optimization) and constraints in modern structural optimization, 
such an approach is technically straightforward.  Alternatively, even if a single rib is considered at a time, 

Parameter Initial Value Optimum Value 
Length Between Perpendiculars, m 91.40 120.20 
Length/Beam Ratio 9.07 8.76 
Beam/Height Ratio 3.14 3.32 
Prismatic Coefficient 0.59 0.50 
Midship Section Coefficient 0.75 0.77 
Displacement (Tons) 2865 3512 



optimization may be iteratively performed if the design changes in a single iteration are limited to perhaps 
20 percent.  This approach may not be the most elegant but it represents good engineering practice and 
makes good use of the power of optimization. 

Now the issue becomes, “How can we create a general design environment for systems made up of 
multiple disciplines and making maximum use of optimization?”  We will accept the fact that the result 
may not be a globally optimum system if we can efficiently design a better system than before.  In other 
words, the goal is not to be perfect, just to be better than the competition. 

 

II. General Design Synthesis 
The key to the present algorithm is to use optimization at every opportunity.  However, if some 

disciplines do not provide “optimum” solutions for their part of the system, information traditionally 
provided by the discipline is still used in the overall optimization process. 

A fundamental requirement is that we must define a set of system variables, X, that are common across 
all disciplines.  Also, we must define the system objective function and system constraints.  Multiple 
objectives are allowed.  Thus, we have the standard optimization task defined as; 

 Minimize ( )F X  (1) 

Subject to; 

 ( ) 0 1,jg X j m≤ =  (2) 

 1,L U
i i iX X X i n≤ ≤ =  (3) 

Equality constraints may also be included but are omitted here for brevity. 
Now, whenever the optimizer requires the values of the objective and constraint functions, one or many 

discipline programs can be called to evaluate these.  The input to the disciplines is the system design 
variables, X,  and the output is the discipline’s optimum design variables, objective and constraint values 
along with the discipline’s contribution to the system objective and constraints (e.g. structural component 
mass or fuel mass).  Thus for discipline i, we have the same form of the optimization task; 

 Minimize ( , )i
iF X Y  (4) 

Subject to; 

 ( , ) 0 1,i
j ig X Y j m≤ =  (5) 

 1,iL iU
i i i iY Y Y i n≤ ≤ =  (6) 

The local objective function, Fi, is a function of the discipline’s choosing, Yi is the set of local variables 
and gj(X,Yi) are local constraints.  Figure 6 shows the interactions between the system and sub-systems. 

For example, the propulsion discipline may maximize efficiency at various operating conditions with 
limits on noise and pollutants.  The engine mass may be a result of this sub-optimization and it is returned 
to the system where the overall objective may include engine mass as well as other masses together with 
fuel to fly a mission. 

The discipline may call further subsystems without loss of generality.  For example, an engine sub-
system may call modules for pumps, engine controls, fan design, etc.  Figure 7 shows the repetitive nature 
of this process. 

Also, the discipline may not actually perform optimization.  If the discipline or sub-discipline involves 
pump design, the result returned to the system may come from a previously designed set of pumps.  
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Figure 8.  Aircraft Synthesis
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Figure 6.  System and Discipline 

Alternatively, it may consist of response surface 
approximations to previously optimized pumps, 
where a numerous pumps were optimized for 
different combinations of system design 
variables.  This may all be done in advance or in 
real time using a single or many computers or processors.  In other words, the discipline is free to solve its 
problem however it chooses.  It is only important that the results be consistent.  That is, if the same set of 
system design variables are provided to the discipline twice, the discipline must return the same responses. 

Implementation of this algorithm is very straightforward using modern optimization software.  Figure 8 
shows the script for conceptual aircraft design using the VisualDOC/VisualScript software20.  The internal 
looping is to perform the trajectory portion 
where both aerodynamics and propulsion 
modules are called.  Here, it is assumed that an 
existing engine is used and the aerodynamics is 
calculated for the geometry defined by the 
system variables.  In the mass properties 
module, simple analytical data can be used or 
structural optimization software may be called 
to optimize the structure for the proposed 
configuration.  If it is desired to design the 
propulsion system as part of the overall process, 
the propulsion design module would be called 
before calling the trajectory module to design 
the engines for the maximum thrust specified 
by the system variables. 

The process outlined here is straightforward 
and imposes minimal disruption to existing 
design processes while making maximum use 
of optimization.  While it may be argued that 
this will not guarantee a true system optimum, 
examples of such cases are difficult to create.  
Indeed, such cases usually indicate that 
coupling variables need to be moved from sub-
systems to the system level. 
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Figure 9. Simplified Aircraft Wing 
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Figure 10. Aerodynamics/Structures Interactions 

 
Figure 11.  Thermal-Structural Beam 

 
Figure 12.  Program Flow 

III. Examples 

A. Aircraft Wing 
Figure 9 shows a simplified aircraft wing.  

The objective is to maximize the aircraft range 
(Breguet range factor) by changing the 
thickness to chord ratio and aspect ratio of the 
wing and to minimize the wing structural 
mass20.  The thickness to chord ratio and 
aspect ratio were treated as system variables in 
VisualDOC and the skins, spars and ribs were 
optimized as a sub-problem using the 
GENESIS structural optimization program21.  
For each proposed set of system variables, the 
structural optimization module was called.  
Here, there was an iterative loop between 
aerodynamics  (using simplified strip theory) 
and structural analysis to generate a set of 
loads and consistent displacement pattern as 
shown in Figure 10.  The EMDO process 
increased the range by 25 percent while 
changing the thickness to chord ratio from 
0.12 to 0.14 and the aspect ratio from 6.86 to 
5.88. 

4) Thermal-Structural Beam 
Consider the simple steel cantilevered beam 

shown in Figure 11 which is 10m in length.  The 
beam is subject to thermal loads with a base 
temperature of 1400oK and the air temperature of 
400oK.  The three independent static loads are 
P1=P2=P3=1000N.  The objective is to minimize 
mass with a flux greater than 5 kw, a maximum 
axial tip displacement of 25 mm and a maximum 
stress under each of the static load cases of 100 
Mpa.  This problem was solved using the modified 
method of feasible directions in VisualDOC. 20 

Figure 12 shows the problem setup where the 
thermal analysis is an iterative process that is 

required to converge to a tolerance of less than one 
percent between cycles with a maximum of 100 
cycles.  The purpose of this example is to 
demonstrate that such iterative loops can often be 
eliminated using optimization. 
Table 2 gives the optimization results for two cases.  
In the first, the thermal problem was completely 
converged at each analysis as shown by the loop in 
Figure 12.  In the second case, the maximum number 
of iterations in this loop was set to one (no 
convergence).  Each time the thermal analysis was 
called, the results from the last call were used as 
input.  Without the loop, a slightly better design was 
achieved using about the same number of function 
evaluations and optimization iterations.  The two 
approaches gave a quite different design due to the 
“flatness” of the design space. 



 

 
Figure 13.  Rocket Engine 

Table 2  Cantilevered beam results 
 

Results  
Parameter 

 
Initial Design Full Convergence No Convergence 

Width 1.000 m 0.0656 m 0.0325 m 
Height 1.000 m 1.631 m 3.2290 m 
Unconverged Flux 13.82 kw  5.03 kw 
Converged Flux 29.36 kw 5.01 kw 5.03 kw 
Mass 78350 kg 8386 kg 8299 kg 

 
The reason this works is that optimization itself is iterative making smaller and smaller chances in the 

design variables as convergence is approached.  Therefore, the thermal analysis converges naturally.  In 
practice, the inner loop may be continued to convergence for the initial design in order to provide a higher 
level of confidence in the process.  This same approach may be applied to the aircraft wing example above.  
It may be noted that if this does not work, the design may be ill-conditioned and, therefore, less reliable. 

5) Upper Stage Rocket Engine 
Figure 13 shows a typical rocket engine.  

Design of such systems include meanline pump 
design, meanline turbine design, combustion 
models, thermal/structural interactions, system 
power balance and others.  While design of 
such systems is confidential due to proprietary 
information or classification, it can be said that 
the EMDO approach is being applied to this 
class of designs.  This resulted in the following 
quote. 22  

“Lately our program for doing optimization 
of this upper stage rocket engine has been 
showing much success.  We now can routinely 
run overnight optimizations that show a much 
higher degree of fidelity than anything we have seen before.  The system optimizations are pretty 
interesting too.  For example the results are showing that overall engine weight can be minimized by de-
tuning some components (and making them heavier) so that other components can be made smaller and 
lighter.  This was something that was not previously done in this field where everything is made to push 
performance.” 

IV. Conclusions 
A engineering approach to multidiscipline design optimization (EMDO) has been presented and 

demonstrated.  The main concept is to perform design much as we always have but use optimization at 
every opportunity.  A key issue in effective application of the method is separating design variables 
between system and sub-system level variables.  By keeping any “coupling” variables at the system level, 
the likelihood of finding the true optimum is improved.  With the EMDO method, the design groups 
maintain autonomy and, in fact, may not even use optimization.  Those that do use optimization provide 
improved information to the system level decision maker.  The EMDO method offers considerable 
flexibility in performing design in a parallel or distributed environment.  Finally, sub-system  optimization 
may be performed separately and provided to the system level design as a set of response surfaces that 
provide optimum sub-system information in terms of system level variables.   

The goal of this method is to encourage more widespread use of optimization without the need for 
theoretical training or complex programming. 
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