
ON HOW TO IMPLEMENT AN
AFFORDABLE OPTIMAL LATIN

HYPERCUBE

Felipe Antonio Chegury Viana∗ Gerhard Venter†

Vladimir Balabanov‡ Valder Steffen, Jr§

Abstract

In general, the choice of the location of the evaluation points is important in the
process of response surface generation. In this scenario, Design of Experiments is
used to help the task of point location through the design space. One popular tech-
nique is the so called Latin Hypercube. This is a fast-to-generate design, however,
due the random nature of the generation process, it can present some disadvan-
tages, such as, the possibility of a bad design in terms of fitting a meta model. To
overcome this difficulty, one can use the Optimal Latin Hypercube. The big deal
with this design is the computational cost associated with its generation. There-
fore, solving this problem requires an optimization technique for search the desing
space. This paper describes a method for generating the optimal latin hypercube
design of experiments. Following, two key-points to speed up the process are pre-
sented. Finally, numerical results are reported, illustrating the success of using the
methodology presented in generation of the Optimal Latin Hypercube.

1 Introduction

Approximation methods have been widely used in engineering design for a long time [1, 2].
Just as an example, the Ford Motor Company reports that a crash simulation in a full
model for a car can spend from 36 to 160 hours [3]. Following this example, a large
number of the complex problems in Optimization uses approximation methods, such as
Design of Experiments combined with Response Surface Methodology, for approximating
objective or constraint functions. The metamodel is used in the place of the original code
to facilitate the optimization task, design space exploration and reliability analysis [4].
Bates et al. in [1] justified the use of this approach based on two needs:

1. to minimize the number of responses evaluations, and

∗PhD student, Federal University of Uberlândia, School of Mechanical Engineering /
fchegury@mecanica.ufu.br.

†VisualDOC Project Manager, Vanderplaats Research and Development, Inc. / gventer@vrand.com.
‡Senior Research and Development Engineer, Vanderplaats Research and Development, Inc. /

vladimir@vrand.com.
§Professor, Federal University of Uberlândia, School of Mechanical Engineering /

vsteffen@mecanica.ufu.br.

1

2. to reduce the effect of numerical noise.

Several commonly used approaches are available to achieve these goals e.g., response
surface and Kriging approximations. Both these approaches require the evaluation re-
sponses at a number of design points in the design space for constructing the resulting
approximations. Typically, Design of Experiments is used to identify the design points
at which to evaluate the response values. Each point in the design space is defined by
a specific combination of the input parameters (design variables). The evaluations of re-
sponses may constitute physical experiments or computer evaluations. Once the response
values are known at the specified points, an approximation model can be constructed that
provides the user with an explicit approximate relationship between the design variables
and responses. Such an approximation model is often referred to as a meta model. Design
of Experiments aims to extract as much information as possible from a limited number
of design points. There are many different criteria available for creating design of exper-
iments. One such criterion is a space filling design that aims at covering as much of the
design space as possible and as evenly as possible. One well known space filling design is
the Latin Hypercube sampling method , proposed by McKay et al. in [5] and Iman and
Conover in [6].

There are several advantages to using the Latin Hypercube design:

• the number of samples (points) is not fixed,

• orthogonality of the sampling points, and

• the sampling points do not depend on the meta model that will be constructed.

The Latin Hypercube design is constructed in such a way that each one of the M design
variables is divided into N equal levels and that there is only one point (or experiment)
[1] for each level. The final Latin Hypercube design then has N samples. Figure 1 shows
two possible Latin Hypercube designs for M = 2 and N = 5. The following remarks
should be made about these designs:

• The Latin Hypercube design is constructed using random points so that there are
many possible answers, depending on the random number generator. In addition,
any one of these designs is as good as the other in terms of the Latin Hypercube
conditions.

• The design can be scaled to fit any range of the design variables.

• A bad design in terms of fitting a meta model to it is possible, even if all the Latin
Hypercube requirements are satisfied, as illustrated in Fig. 1(b).

To overcome the above mentioned problem, the so called Optimal Latin Hypercube was
introduced to improve the space-filling property. The Optimal Latin Hypercube design
augments the Latin Hypercube design by requiring that the sample points be distributed
as uniformly as possible through out the design space. However, the task of obtaining
an Optimal Latin Hypercube design is difficult. For example, to optimize the location of
10 samples in 4 dimensions (the 10× 4 Latin Hypercube) the number of distinct designs
to consider is more than 1022. If the number of design variables is increased to 5 for
optimizing the 10 × 5 Latin Hypercube, the number of distinct designs is as large as
6× 1032.

2

(a) Latin Hypercube 01 (b) Latin Hypercube 02

Figure 1: Latin Hypercube DoE for M = 2 and N = 5.

One way to solve this problem is to define the generation of the Optimal Latin Hyper-
cube design as an optimization problem. Audze and Eglais in [7] propose a method that
uses the potential energy of the sample points to generate a uniform distribution of the
points. Johnson et al. in [8] introduce a distance criterion as an objective function to be
used in the optimization problem. Morris and Mitchell in [9] presented the φp criterion
as an alternative to the distance criterion. Based on the previous criteria, several authors
report different strategies to solve the final optimization problem. Morris and Mitchell
in [9] adapted a version of the simulated annealing algorithm. Ye et al. in [10] used a
columnwise-pairwise algorithm. Bates et. al in [1] used a special implementation of the
genetic algorithm. However, the computational cost of optimization performed with these
existing algorithms is generally high [1, 2]. For example, Ye et al. in [10] reported that
generating an optimal 25 × 4 Optimal Latin Hypercube using the columnwise-pairwise
algorithm could take several hours on a Sun SPARC 20 workstation.

The question then arises how to obtain an Optimal or nearly Optimum Latin Hyper-
cube design, without spending too much computational resources? One possible answer
is that it is more practical to solve the Optimum Lathin Hypercube design-related opti-
mization problem approximately, i. e., to obtain an answer that is good enough in terms
of space-filling but maybe it is not the “optimum” design. In this paper we used an al-
gorithm that is not only able to quickly construct a good design of experiments, but also
possess global properties, allowing it to move away from a locally optimal design [2].

2 Optimal Latin Hypercube Design of Experiments

The Optimal Latin Hypercube design problem is defined as the searching of a design X∗,
which minimizes a given optimality criterion f :

X∗ = min f(X) . (1)

The optimality criterion is used to achieve the space-filling property, and as a conse-
quence, to avoid situations such as that illustrated in Fig. 1(b). In this paper, it was used
the φp criterion [9, 2]. As can be seen through Eqs. 2 and 3, this optimality criterion is
related to the maximization of the point-to-point distance of the desing [8]. A design is
called a φp-optimal design, if it minimizes:

φp =

[

s
∑

i=1

Jid
−p
i

]1/p

, (2)

3

where

• p is a positive integer (with a very large p, the φp criterion is equivalent to the
maximin distance criterion [2]),

• di’s are distinct distance values with d1 < d2 < . . . < ds

• Ji is the number of pairs of points in the design separated by di, and

• s is the number of distinct distance values.

By sorting all the point-to-point distance dij(1 ≤ i, j ≤ n, i 6= j), the distance list
(d1, d2, ..., ds) and the index list (J1, J2, ..., Js) can be obtained. To close the φp definition,
the inter-sited distance can be expressed as follows:

d(xi,xj) = dij =

[

M
∑

k=1

|xik − xjk|
t

]1/t

, t = 1 or 2 . (3)

Up to this point, only the optimization problem was defined. However, in order to
efficiently obtain an Optimal Latin Hypercube design, more than the problem definition is
required. The appropriate optimization algorithm along with an enhanced way of evalu-
ating the optimality criterion are important. To overcome the difficulties associated with
the existing approaches the methods used in this work is supported by (a) an adaptation
and an enhancement of a global search algorithm, i.e., the Enhanced Stochastic Evolu-
tionary Algorithm, and (b) an efficient method for evaluating the optimality criterion to
reduce the computational cost.

3 Enhanced Stochastic Evolutionary Algorithm

The algorithm used to solve this problem is the Enhanced Stochastic Evolutionary Algo-
rithm (ESEA), introduced in [2] as an enhanced version of the Stochastic Evolutionary
Algorithm, developed by Saab and Rao [11]. The ESEA, as shown in Fig. 2, con-
sists of an inner loop and an outer loop. The inner loop constructs new designs by an
element-exchange approach and dictates whether to accept the designs based on a certain
acceptance criterion dealing with the location of the points. A set of J Latin Hypercube
designs is taken by exchanging two elements within the column (i mod m) and then the
best of this J designs is chosen to be compared with the current best solution. The outer
loop controls the entire optimization process by adjusting the threshold value Th in the
acceptance criterion of the inner loop. According to [2], this dynamic adjust of the accep-
tance criterion enable the algorithm to avoid local minima designs. In the entire process,
Xbest is used to keep track of the updated best design.

3.1 Inner Loop

The inner loop is responsable for the construction of new designs by using an element-
exchange approach. These new designs can be accept or not, depending on a acceptance
criterion that deals with the location of the points. As can be seen in Fig. 2(b), the
innner loop has M iterations. At iteration i, a set of J Latin Hypercube designs is taken
by exchanging two elements within the column (i mod m) of the current design, X, and

4

(a) Outer Loop (b) Inner Loop

Figure 2: Basic scheme for ESEA.

5

then the best of this J designs, Xtry, is chosen to be compared with the current solution,
X. The substitution of X by Xtry will depend on a acceptance criterion given by:

∆f ≤ Th × random (0, 1) , (4)

where:

• ∆f = f (Xtry)− f (X),

• random (0, 1) is a function that generates uniform random numbers between 0 and
1, and

• Th > 0 is the threshold contrl parameter.

Xtry will be accepted only if it satisfies 0 < ∆f < Th and the probability of acceptance
given by:

P (S ≥ ∆f/Th) = 1−
∆f

Th
, (5)

Using the scheme guided by Eqs. 4 and 5, the algorithm intends to avoid local so-
lutions. It can be noticed that a temporarily worse design, Xtry , could be accepted
to replace the current design, X. Table gives the values for the inner loop parameters,
according to what is suggested by Jin et al. in [2].

Table 1: Inner loop parameters.

Parameter Value Comments
J ne/5, but no

larger than 50.
ne is the number of all possible distinct k = 2
element-exchanges in a column. In the Latin Hy-
percube case ne =

(

N
k

)

= n!
k!(n−k)!

.

M
2×N ×M

J
, but

no larger than
100.

M is the number of iterations in the inner loop.

3.2 Outer Loop

The outer loop controls the entire optimization process by adjusting the threshold value
Th in the acceptance criterion of the inner loop. Initially, Th is taken as a small fraction of
the initial design (Th = 0.005× φp (X0)) and its value is dinamically updated during the
searching process. The search process is devided in two main stages: (a) the improving
process, which atempts to find a locally optimal design, and, (b) the exploration process,
which try to scape from the locally optimal design.

Taking a deeper look in these two stages:

Improving process : A search process is turned to the improving process if the φp-
criterion is improved after to run an entire inner loop. This mechanism is controlled
by flagimp, i.e. flagimp = 1. Once turning to the improving process, Th is adjusted
to rapidly find a locally optimal design. This is done keeping the value of Th small,

6

so that only a better design or a slightly worse design would be accepted to replace
X. Th is updated based on the acceptance ratio nacpt/M (number of accepted design
divided by the number of tries in the inner loop) and the improvement ratio nimp/M
(number of improved design divided by the number of tries in the inner loop). Thus,
there are just the following possibilities:

1. Th will decrease if the acceptance ratio is larger than a small percentage (e.g.,
10%) and the improvement ratio is less than the acceptance ratio.

2. Th will maintain in the current value if the acceptance ratio is larger than the
small percentage and the improvement ratio is equal to the acceptance ratio
(meaning that Th is so small that only improving designs are accepted by the
acceptance criterion).

3. Th will increase otherwise

The following equations are used to decrease and increase Th respectively:

T new
h = α1T

old
h , (6)

T new
h =

T old
h

α1
, (7)

where 0 < α1 < 1 . As in [2], the setting of α1 = 0.8 worked well in all tests.

Exploration process : If no improvement is made after to run an entire inner loop,
the search process will be turned to the exploration process. This mechanism is
controlled by flagimp, i.e. flagimp = 0. During the exploration process, Th is
adjusted to help the algorithm escape from a locally optimal design. Differently
from what occurs during the improving process, here, Th fluctuates within a range
based on the acceptance ratio. If the acceptance ratio is less than a small percentage
(e.g., 10%), Th will rapidly increase until the acceptance ratio is larger than a
large percentage (e.g. 80%). If this happens, Th will be slowly decreased until the
acceptance ratio is less than the small percentage. This process will be repeated
until an improved design is found.

The following equations are used to decrease and increase Th, respectively:

T new
h = α2T

old
h , (8)

T new
h =

T old
h

α3

, (9)

where 0 < α3 < α2 < 1 . As in [2], the setting of α2 = 0.8 and α3 = 0.7 worked well in
all tests.

This way, during the exploration process, Th increases rapidly (so that more worse
designs could be accepted) to help moving away from a locally optimal design. And, Th

decreases slowly for searching better designs after moving away from the local optimal
design.

For the whole algorithm, the maximum number of cycles is used as the stopping
criterion.

7

4 Efficient Approach for Evaluating the Optimality

Criterion

Since the optimality criterion is evaluated whenever a new design of experiments is con-
structed, the efficiency of this evaluation becomes very important for optimizing the design
of experiment within a reasonable time frame. Consider the evaluation of the φp based
on Eq. 2. It can be seen that this process includes three parts, i.e.:

1. the evaluation of all the point-to-point distances,

2. the sorting of those inter distances to obtain a distance list and index list, and

3. the evaluation of the φp

However, it can be observed that after an exchange (xi1k ←→ xi2k) only elements in
rows i1 and i2 and columns i1 and i2 are changed in the D distance matrix. Thus, if
Eq. 2 could be written in such a way to take advantage of this fact, the new way of
calculation of φp is provided. It would be avoid double unnecessary calculations and the
sorting required by Eq. 2. So, the new φp is computed by:

φ′
p =

[

φp
p +

∑

1≤j≤n,j 6=i1,i2

(

(

d′
i1j

)−p
− (di1j)

−p
)

∑

1≤j≤n,j 6=i1,i2

(

(

d′
i1j

)−p
− (di1j)

−p
)

]1/p

.

(10)

where

• d′
i1j = d′

ji1 =
[

(di1j)
t + s (i1, i2, k, j)

]1/t
,

• d′
i2j = d′

ji2
=

[

(di2j)
t − s (i1, i2, k, j)

]1/t
, and

• s (i1, i2, k, j) = |xi2k − xjk|
t − |xi1k − xjk|

t.

Tab. 2 provides an idea how the efficiency during the evaluation of the objective
function can save time in the task of searching for the Optimal Latin Hypercube (Tfull is
the objective function calculated through Eq. 2 and Tenhanced is the enhanced approach,
i.e. Eq. 10). Tab. 2 shows the wall-clock time used to calculate the objective function
using the exact and approximate approaches.

Table 2: Time comparison between two ways of calculating the objective function (adopted
from [2]).

Latin Hypercube Tenhanced/Tfull

12× 4 0.454545
25× 4 0.192308
50× 5 0.082645

100× 10 0.032787

8

5 An Empirical Approach to Create Structured Latin

Hypercube Designs

This section describes an empirical approach to create a well structured design (rather
than based on random number generation) that is reasonably close to Optimal Latin
Hypercube design without performing optimization. The importance of such approach
resides in the fact that it gives the capability to create a Latin Hypercube design that is
better than just randomly generated Latin Hypercube design using minimum computa-
tional time (at most, seconds). Further on, this design can be used either as an initial
guess for the Optimal Latin Hypercube generator algorithm or as the final design. In this
case, one should take into account a compromise somultion between the final design and
the computational cost for generating the Optimal Latin Hypercube.

The approach is quite simple and it is based on the hope that the most simple Latin
Hypercube that can be constructed for a specific N -dimensional problem can be used as
a seed for a complete design. Instead of a formal description of the approach, it will be
used a practical example to explain how to build a structured design from a basic one.

Consider the case in which is desired an 16 × 2 Latin Hypercube, i.e., 16 points in
2-dimensions. First of all, it is chosen an Latin Hypercube that will be used as a seed for
the final design. Fig. 3 shows the some examples of 2-dimensional seed designs. Figure
3(a) shows the seed used in this example. It is important to notice that this seed can be
as simple as just a 1×N design (where N is the number of dimensions of the problem).

(a) 1 ×
2 seed
design.

(b) 2 × 2
seed
design.

(c) 3×2 seed de-
sign.

(d) 4×2 seed design.

Figure 3: Exemples of seed design for 2-dimensions.

Secondly, the Latin Hypercube is divided in blocks in such a way that each dimension
is divided in the same number of divisions. Thus, each block can be filled using the seed
design (defined previously). It is clear that all this process is inter-dependent. So, the
seed size, i. e., the number of points of the seed design, and the final design size will
determine the number of divisions and as a consequence the number of resulting blocks.
In general, the following relations must be observed:

LatinHypercubeSize = NumberOfBlocks× SeedSize , (11)

NumberOfBlocks = (NumberOfDivisions)NumberOfDimensions , (12)

SeedSize =
DesignSize

NumberOfBlocks
. (13)

9

Following this ideas, Fig. 4 shows how the 16 × 2 Latin Hypercube mesh will be
divided.

Figure 4: 16× 2 Latin Hypercube divided mesh.

Finally, it should be done the proper placement of the seed into each of the blocks of
the divided mesh. This can be done starting by properly scaling the “seed design” and
then placing it at the origin. After that, a set of “shiftings” must be performed. The first
one is to shift the seed to consecutive blocks following one of the dimensions. The second
one is to shift the origin of the seed inside the mesh of the block. There is a coupling
relating this two process. If the block shifting is performing on the rows, the seed-origin
shift must be performed on the columns, and vice-versa. Figure 5 illustrates how this
process is applied.

The greater advantage of this approach is that there is no calculation to be performed.
All operations can be viewed as translations of a N -points block in a N -dimensional
hypercube. Preliminary studies have been conducted that show promising results in 2
and 3-dimenisonal cases.

6 Numerical Results

6.1 Optimal Latin Hypercube

As an illustration of how the entire technique works, Fig. 6 shows both the initial Latin
Hypercube, i.e. before optimization, and the final Optimal Latin Hypercube, resultant
from the optimization. The initial Latin Hypercube is a random design with good one-
dimensional projective property (in other words, there is only one point for each level),
but not so good space-filling property, on the other hand, in the Optimal Latin Hypercube
the projective property is maintained while the space filling property is improved.

Tab. 3 gives the wall-clock time for creating a set of OLH. These results were obtained
using a PC with a 1000 Mhz Pentium III Zeon processor, running Linux.

At this point, it can be illustrated what is the comprimising solution when adopting
the present approach for Optimal Latin Hypercube generation. Table 4 shows a compar-
ison among three different strategies. Both strategies that uses Genetic Algorithms are
described in [1]. Basically, they differ from the present method since they are based on

10

Figure 5: 16× 2 Structured Latin Hypercube creation process.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Initial Latin Hypercube

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Final Optimal Latin Hypercube

Figure 6: 16× 2 Latin Hypercube before and after optimization.

11

Table 3: Time consumption for several Optimal Latin Hypercube.

Design Time [s]
10× 2 < 1
50× 2 5
100× 2 23
10× 5 < 1
50× 5 6

100× 25 38
200× 25 324
100× 50 45
200× 50 387
200× 100 395

two different codifications for Genetic Algorithm and instead of using the φp-criterion,
they use the potential energy U -criterion. This criterion is analogous to the potential
energy of the system of material points and can be expressed by:

U =

N
∑

p=1

N
∑

q=p+1

1

d2
pq

, (14)

where dpq is the inter-distance between the points p and q of the design.

Comparing both the number of function evaluations and the value for U -criterion, it
is easy to see that the current approach is a compromise between computational cost and
the final design. The advantage is clear specially when comparing the number of function
evaluations for large designs. In general, the present technique generates an answer that
is good enough in terms of space-filling but maybe it is not the “optimum” design.

Table 4: Nuber of function evaluations required for different Optimal Latin Hypercube
generators. The values within parenthesis represent the potential energy U -criterion.

Design Binary Genetic Al-
gorithm (data from
[1])

Permutation Ge-
netic Algorithm
(data from [1]

Enhanced Stochas-
tic Evolutionary
Algorithm

5× 2 60 (1.2982) 50 (1.2982) 2, 040 (1.2982)
10× 2 39, 240 (2.0662) 1, 860 (2.0662) 5, 085 (2.1393)
120× 2 22, 003, 500 (5.7733) 130, 570 (5.5174) 114, 000 (5.7542)
5× 3 5, 260 (0.7267) 1, 922 (0.7267) 3, 060 (0.7361)
10× 3 165, 980 (1.0401) 38, 950 (1.0242) 4, 950 (1.0359)
120× 3 5, 908, 540 (2.0541) 1, 996, 920 (1.9613) 184, 800 (2.0309)
50× 5 280, 000, 000 (0.7348) 1, 996840 (0.7270) 143, 000 (0.7670)
120× 5 59, 802, 200 (0.8003) 1, 998, 540 (0.7930) 475, 200 (0.8167)

6.2 Structured Latin Hypercube Designs

Figure 7 illustrates two more examples in which the present methodology was applied.

12

(a) 18× 2Latin Hypercube (b) 16× 2 Latin Hypercube

Figure 7: Examples of structured Latin Hypercube designs.

One of the appeals of this approach is to save time spent by the Optimal Latin Hyper-
cube generator algorithm. When using this structured Latin Hypercube design, one can
substitute the initial guess for the Optimal Latin Hypercube generator algorithm or even
the final design. To have an idea about how efficient can be the proposed method, Tab.
5 shows the performance comparison of the Optimal Latin Hypercube generator starting
from three different initial guesses. For all cases, the stopping criterion used was the
maximum number of 100 iterations. The three initial guesses used were: (a) a structured
design, (b) a random initial design, and (c) the worst (diagonal) initial design (as shown
in Fig. 1(b)).

At this point, it is important to notice that:

1. For all cases the structured design presents their initial and final values for the
φp-criterion very close one to the other.

2. Considering that all of these cases stopped by the number of iterations without
improvements, the structured design allows a faster convergence of the optimization
task.

This is a sign that the structured design is, at least, near to a local minima. Consid-
ering the computational time for the optimization of the initial guess and the final value
of the φp-criterion for all cases, one using the structured design can decide to skip the
optimization step as a compromising solution between the time and a good design.

7 Conclusions

In this paper, it was shown an efficient and affordable algorithm for constructing the
Optimal Latin Hypercube Design of Experiemnt. The complete approach includes two
major elements: (a) the use of Enhanced Stochastic Evolutionary Algorithm for perform-
ing the search process, and (b) the employment of an efficient method for evaluating the
optimality criteria (φp).

It was also described an empirical approach to create structured Latin Hypercube
designs. This approach is based on the hope that a simple “seed design”, with few points,
can be managed to build a complete design. The technique has as main advantage the
fact that it does not need either any type of optimality criterion evaluation or search for

13

Table 5: Optimal Latin Hypercube generator with three different initial guesses.

Design size Quantity Worst case Structured
case

Random
case

225× 2

Time [s] 143 68 147
Iterations 251 101 237
φp initial 0.55715 0.07052 0.51110
φp final 0.07560 0.07052 0.07528

1024× 2

Time [s] 11155 3868 7838
Iterations 284 101 202
φp initial 0.57433 0.03527 0.50697
φp final 0.04218 0.03527 0.04258

256× 4

Time [s] 313 372 469
Iterations 283 336 424
φp initial 0.27929 0.01658 0.03846
φp final 0.01101 0.01087 0.01082

243× 5

Time [s] 609 556 550
Iterations 547 498 494
φp initial 0.22320 0.01303 0.02668
φp final 0.00686 0.00688 0.00679

1024× 10

Time [s] 34283 27772 29421
Iterations 601 489 518
φp initial 0.22973 0.00440 0.01086
φp final 0.00233 0.00234 0.00232

the solution. All the building process is based only on scaling and translations of the
“seed design”.

References

[1] S. Bates, J. Sienz, and V. Toropov. Formulation of the Optimal Latin Hypercube
Design of Experiments Using a Permutation Genetic Algorithm. In Proceedings of
the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Ma-
terials Conference, Palm Springs, USA, AIAA-2004-2011, April 19-22 2004.

[2] R. Jinb, W. Chena, and A. Sudjianto. An Efficient Algorithm for Constructing Opti-
mal Design of Computer Experiments. Journal of Statistical Planning and Inference,
134(1):268–287, September 2005.

[3] L. Gu. A Comparison of Polynomial based Regression Models in Vehicle Safety Anal-
ysis. In ASME Design Engineering Technical Conferences and Design Automation
Conference, Pittsburgh, USA, 2001.

[4] T. W. Simpson, A. J. Booker, D. Ghosh, A. A. Giunta, P. N. Koch, and R. J. Yang.
Approximation Methods in Multidisciplinary Analysis and Optimization: a Panel
Discussion. Structural and Multidisciplinary Optimization, 27(5):302–313, 2004.

14

[5] M.D. McKay, R.J. Beckman, and W.J. Conover. A Comparison of Three Methods
for Selecting Values of Input Variables from a Computer Code. Technometrics,
21:239245, 1979.

[6] R. L. Iman and W. J. Conover. Small Sample Sensitivity Analysis Techniques for
Computer Models, with an Application to Risk Assessment. Communications in
Statistics, Part A. Theory and Methods, 17:1749–1842, 1980.

[7] P. Audze and V. Eglais. New Approach for Planning out of Experiments. Problems
of Dynamics and Strengths, 35:104–107, 1977.

[8] M. Johnson, L. Moore, and D. Ylvisaker. Minimax and Maximin Distance Designs.
Journal of Statistics Planning and Inference, 26:131–148, 1990.

[9] M. D. Morris and T. J. Mitchell. Exploratory Designs for Computational Experi-
ments. Journal of Statistics Planning and Inference, 43:381–402, 1995.

[10] K. Q. Ye, W. Li, and A. Sudjianto. Algorithmic Construction of Optimal Symmetric
Latin Hypercube Designs. Journal of Statistical Planning and Inference, 90:145159,
2000.

[11] Y. G. Saab and Y. B. Rao. Combinatorial Optimization by Stochastic Evolution.
IEEE Transactions on Computer-Aided Design, 10:525–535, 1991.

15

	Introduction
	Optimal Latin Hypercube Design of Experiments
	Enhanced Stochastic Evolutionary Algorithm
	Inner Loop
	Outer Loop

	Efficient Approach for Evaluating the Optimality Criterion
	An Empirical Approach to Create Structured Latin Hypercube Designs
	Numerical Results
	Optimal Latin Hypercube
	Structured Latin Hypercube Designs

	Conclusions

