
 1

Gradient Based Optimization of a Sample Z-Flow Cooling System Using
Multiple Processors

G. Quinn & G. Venter
Vanderplaats Research and Development, Inc.
Colorado Springs, CO, USA

Abstract

This paper presents and describes a scheme to optimize the cooling efficiency of a
contrived two-dimensional Z-flow cooling system. The FLUENT CFD code is used to
analyze the steady state flow characteristics of variable flow-hole geometries between the
“block” and the “head” portion of the fluid model. The VisualDOC general-purpose
optimization code is used to determine the optimum geometry that satisfies minimum
fluid velocity constraints at ten fluid locations. A gradient-based optimization algorithm
is chosen to investigate its performance as a candidate scheme for CFD problems with
larger numbers of design variables. Because optimization algorithms require numerous
analyses VisualDOC is used to solve this problem utilizing a distributed1 heterogeneous2
system of from one to four CPU’s.

Problem Description

Vanderplaats Research and Development (VR&D) has worked closely with FLUENT
technical specialists to incorporate geometric design optimization with the two-
dimensional Z-flow cooling system shown in Figure 1.

Velocity_Head_Point_1

Velocity_Block_Point_1

VBP_2 VBP_3 VBP_4 VBP_5

VHP_2
VHP_3 VHP_4

VHP_5

Inlet Velocity
(8.577 m/s)

BLOCK

HEAD

Hole 1 Hole 2 Hole 4 Hole 5 Hole 6Hole 3

850 mm

Gasket

Velocity_Head_Point_1

Velocity_Block_Point_1

VBP_2 VBP_3 VBP_4 VBP_5

VHP_2
VHP_3 VHP_4

VHP_5

Inlet Velocity
(8.577 m/s)

BLOCK

HEAD

Hole 1 Hole 2 Hole 4 Hole 5 Hole 6Hole 3

850 mm

Velocity_Head_Point_1

Velocity_Block_Point_1

VBP_2 VBP_3 VBP_4 VBP_5

VHP_2
VHP_3 VHP_4

VHP_5

Inlet Velocity
(8.577 m/s)

BLOCK

HEAD

Hole 1 Hole 2 Hole 4 Hole 5 Hole 6Hole 3

Velocity_Head_Point_1

Velocity_Block_Point_1

VBP_2 VBP_3 VBP_4 VBP_5

VHP_2
VHP_3 VHP_4

VHP_5

Inlet Velocity
(8.577 m/s)

Velocity_Head_Point_1

Velocity_Block_Point_1

VBP_2 VBP_3 VBP_4 VBP_5

VHP_2
VHP_3 VHP_4

VHP_5
Velocity_Head_Point_1Velocity_Head_Point_1

Velocity_Block_Point_1Velocity_Block_Point_1

VBP_2 VBP_3 VBP_4 VBP_5

VHP_2
VHP_3 VHP_4

VHP_5

Inlet Velocity
(8.577 m/s)

BLOCK

HEAD

Hole 1 Hole 2 Hole 4 Hole 5 Hole 6Hole 3Hole 1 Hole 2 Hole 4 Hole 5 Hole 6Hole 3

850 mm850 mm

Gasket

Figure 1 – Z-Flow Cooling System

1 Distributed computing systems are characterized by the various CPU’s residing on different platforms.
This is in contrast to parallel computing systems with multiple CPU’s residing on the same platform.
2 Heterogeneous computing systems are distributed systems comprised of different types of platforms (e.g.
different hardware and/or operating systems).

 2

Coolant enters the block portion of the model and exits the head as shown by the arrows.
The cooling jacket hole geometry in the gasket may be modified to produce an optimum
flow condition as calculated by the FLUENT CFD program. Ten locations are chosen to
monitor the coolant velocity response. Design constraints are defined such that all
response locations must satisfy a minimum velocity requirement of 2.0m/s. The design
objective is to maximize the fluid velocity averaged at the ten locations by varying each
hole diameter and location (offset from center).

Fluid Meshing

GAMBIT is used to mesh the fluid in the Z-Flow cooling model. Hole zone regions
surrounding each hole are re-meshed each time VisualDOC performs an analysis call.

Hole 1 Diameter (mm)
Is Design Variable D1

50 mm

Gasket Gasket

P1

Design Variable P1 is the
Perturbation (mm) of the
Hole Centerline from the
Center of the Gasket

D1
Hole 1 Diameter (mm)
Is Design Variable D1

50 mm

Gasket Gasket

P1

Hole 1 Diameter (mm)
Is Design Variable D1

50 mm

Gasket Gasket

P1

Design Variable P1 is the
Perturbation (mm) of the
Hole Centerline from the
Center of the Gasket

D1

Figure 2 – Design Variable Definition

VisualDOC automatically updates a parameterized gambit journal file to reflect the
design variable changes. Figure 2 shows how D1 and P1 are used to adjust the geometry
of each hole, which in turn affects the adjacent fluid mesh.

GAMBIT re-meshes the local region surrounding each hole based on twelve updated
design variables D1-D6 and P1-P6. The new mesh is then combined with a pre-existing

 3

mesh file of the rest of the model using TMERGE. Figure 3 shows how GAMBIT and
TMERGE create an updated mesh file that is ready for FLUENT analysis. Figure 4
shows a close-up of the hole-zone re-mesh along with the adjacent block and head mesh.

BLOCK

HEAD

The BLOCK/HEAD mesh file
is unchanged for all
design iterations.

The mesh regions surrounding each
hole are automatically created as
VisualDOC updates the 12 design
variables (i.e. GAMBIT
parameters) in the GAMBIT
journal file for each design
iteration.

The two mesh files are combined
using the TMERGE utility.
This example forces node
compatibility at the mesh
interface so that the meshes
are conformable.

BLOCK

HEAD

BLOCK

HEAD

The BLOCK/HEAD mesh file
is unchanged for all
design iterations.

The mesh regions surrounding each
hole are automatically created as
VisualDOC updates the 12 design
variables (i.e. GAMBIT
parameters) in the GAMBIT
journal file for each design
iteration.

The two mesh files are combined
using the TMERGE utility.
This example forces node
compatibility at the mesh
interface so that the meshes
are conformable.

Figure 3 - Meshing Scheme Used for Optimization I terations

Blockhead.msh

HoleZone.msh

Blockhead.msh

GasketGasket

The Gasket is modeled as walls that
describe the hole geometry.

For More Complicated Geometry’s
Additional commands in the
GAMBIT Journal File Could
be Added to Insure a Desired
Level of Mesh Quality. This was
Not Done for this Example.

This Problem used small Tri-Cells
in the Regions Surrounding the
Holes and Smoothed the Mesh
using the lwlaplacian method.
Random Manual Equi-angle Skew
Checks Gave Max Ratios of Less
Than 0.5 (Ratios of 0.85 are
Considered OK While Smaller is
Better).

Blockhead.msh

HoleZone.msh

Blockhead.msh

GasketGasket

Blockhead.msh

HoleZone.msh

Blockhead.msh

GasketGasket

The Gasket is modeled as walls that
describe the hole geometry.

For More Complicated Geometry’s
Additional commands in the
GAMBIT Journal File Could
be Added to Insure a Desired
Level of Mesh Quality. This was
Not Done for this Example.

This Problem used small Tri-Cells
in the Regions Surrounding the
Holes and Smoothed the Mesh
using the lwlaplacian method.
Random Manual Equi-angle Skew
Checks Gave Max Ratios of Less
Than 0.5 (Ratios of 0.85 are
Considered OK While Smaller is
Better).

Figure 4 - Close-Up of Hole 1 Mesh

 4

FLUENT CFD Analysis

VisualDOC automatically executes FLUENT using a journal file that reads in the up-
dated Z-Flow mesh file. An interpolation file containing the FLUENT solution for the
initial configuration is used to initialize the FLUENT solver to speed up solution
convergence. Both first and second order upwind schemes for discretization of field
variables are run as well as two passes of velocity gradient mesh adaptation. This is
shown graphically below in Figure 5.

Initialize the solver with the constant inlet
velocity and run for 6 iterations.
This establishes initial residual values for
solution convergence criteria.

by the previous design cycle.

Second order solution Second velocity
gradient mesh adaptation

Initialize the solver with the constant inlet
velocity and run for 6 iterations.
This establishes initial residual values for
solution convergence criteria.

After 6 iterations read the
interpolation fi le generated
by the initial design cycle.

Second order solution

First velocity
gradient mesh adaptation

Second velocity
gradient mesh adaptation

Initialize the solver with the constant inlet
velocity and run for 6 iterations.
This establishes initial residual values for
solution convergence criteria.

by the previous design cycle.

Second order solution Second velocity
gradient mesh adaptation

Initialize the solver with the constant inlet
velocity and run for 6 iterations.
This establishes initial residual values for
solution convergence criteria.

After 6 iterations read the
interpolation fi le generated
by the initial design cycle.

After 6 iterations read the
interpolation fi le generated
by the initial design cycle.

Second order solution

First velocity
gradient mesh adaptation
First velocity
gradient mesh adaptation

Second velocity
gradient mesh adaptation

Figure 5 - FLUENT Residuals versus Solver I terations

The goal of the VisualDOC optimization is to ensure that the coolant velocity at ten
locations all have velocities of at least 2.0m/s. These are design constraints and as such,
their response values must be passed to the optimizer. For this problem, the velocity
response is defined as FLUENT point-surface entities (FLUENT => Surface => Point).
The point-surface response is exported as a Tecplot formatted file from which
VisualScript may extract the FLUENT velocities.

TI TLE = ” Sampl e Tecpl ot Fi l e"
VARI ABLES = X, Y, " Vel oci t y Magni t ude"
ZONE T=" bl ock_poi nt _1" , N=1, E=1, ET=TRI ANGLE, F=FEBLOCK

8. 80000e- 02

- 5. 00000e- 02

3. 62145e+00
1

 5

VisualScript Job Control

VisualScript is a stand-alone program provided by VR&D to allow easy coupling
between VisualDOC and one or more existing analysis programs, as required to perform
design optimization. The control and execution for this problem is graphically shown in
Figure 6.

Figure 6 - VisualScript Flow Diagram

As previously described, the parameterized GAMBIT journal file is modified with
perturbed VisualDOC design variables (e.g. D1-D6, & P1-P6). TMERGE combines the
GAMBIT re-meshed hole zones with the unchanged portion of the fluid mesh. The
FLUENT journal file execution in this flow exports the velocity response file.

The geometry constraint requires explanation that is more detailed. The relationship
between each hole diameter and its X-perturbation from the gasket centerline must

 6

constrain improbable geometry's (e.g. a positive perturbation plus the radius of the hole
must be less than 25mm). This geometric constraint is shown in Figure 7.

50 2P- D +≤ => 0 50 - 2P D ≤+

05 D 0 ≤≤

25 P 25- ≤≤

Design Variable D Bounds

Design Variable P Bounds

Geometric Constraint

50 mm

P

D

Hole Diameter (mm)

Hole Perturbation (mm)

50

25-25 0

Design
Space

D = -2P + 50D = 2P + 50

P

D

50 2P- D +≤ => 0 50 - 2P D ≤+

05 D 0 ≤≤

25 P 25- ≤≤

Design Variable D Bounds

Design Variable P Bounds

Geometric Constraint50 2P- D +≤ => 0 50 - 2P D ≤+

05 D 0 ≤≤

25 P 25- ≤≤

0 50 - 2P D ≤+

05 D 0 ≤≤

25 P 25- ≤≤

Design Variable D Bounds

Design Variable P Bounds

Design Variable D Bounds

Design Variable P Bounds

Geometric Constraint

50 mm

P

D

50 mm

P

D

Hole Diameter (mm)

Hole Perturbation (mm)

50

25-25 0

Design
Space

D = -2P + 50D = 2P + 50

P

D
Hole Diameter (mm)

Hole Perturbation (mm)

50

25-25 0

Design
Space

D = -2P + 50D = 2P + 50

Hole Diameter (mm)

Hole Perturbation (mm)

50

25-25 0

Design
Space

Hole Diameter (mm)

Hole Perturbation (mm)

50

25-25 0

Hole Diameter (mm)

Hole Perturbation (mm)

50

25-25 0 25-25 0

Design
Space

Design
Space

D = -2P + 50D = 2P + 50 D = -2P + 50D = 2P + 50

P

D

Figure 7 - Geometr ic Constraint

Normally, design variables that fall between their upper and lower bounds do not pose an
operational problem if they violate the geometric constraint above (e.g. D1=40, &
P1=20). The resulting design is analyzed and is simply deemed infeasible due to the
violated constraint. The optimizer continues with its design variable search strategy to
find a feasible design. However, for this particular problem GAMBIT will fail to re-
mesh the regions surrounding the holes if the geometric constraint is violated. This is
why the “Geometry Constraint” block exists in the flow diagram of Figure 6. It allows
VisualScript to exit the script if this constraint is violated, and thus avoid a GAMBIT
hard failure. When this happens, VisualDOC revises its search strategy accordingly.

 7

Optimization Results

All optimization results in this report have the following characteristics in common:

 Opt i mi zat i on Met hod : SQP(Sequential Quadratic Programming)
 Obj ect i ve : Maxi mi ze
 Const r ai nt Tol er ance : - 0. 03
 Vi ol at ed Const r ai nt Tol er ance : 0. 003
 Gr adi ent s Cal cul at ed By : Fi r st For war d Di f f er ence
 Rel at i ve Fi ni t e Di f f er ence St ep : 0. 25
 Mi ni mum Fi ni t e Di f f er ence St ep : 3. 00

The optimization statement for this problem is: Maximize the fluid velocity averaged at
ten response points by varying each hole diameter and lateral displacement subject
to minimum velocity constraints of 2.0 m/s at each response location.

Figure 8 lists the FLUENT velocity magnitude at ten points that are required to have a
minimum coolant velocity. Design cycle 0 shows the results that were calculated using
the initial design variable values3 (which are also shown in the Figure). Note that two
points have fluid velocities that are less than 2.0 m/s, which means this initial design is
not feasible.

Design Cycle 0

4.5m/s 3.8m/s 3.5m/s 3.0m/s
2.0m/s

1.7m/s3.9m/s3.6m/s
3.3m/s0.5m/s

D1 = 10.0mm
P1 = 0.0mm

D2 = 10.0mm
P2 = 0.0mm

D3 = 10.0mm
P3 = 0.0mm

D4 = 10.0mm
P4 = 0.0mm

D5 = 10.0mm
P5 = 0.0mm

D6 = 10.0mm
P6 = 0.0mm

Design Cycle 0

4.5m/s 3.8m/s 3.5m/s 3.0m/s
2.0m/s

1.7m/s3.9m/s3.6m/s
3.3m/s0.5m/s

D1 = 10.0mm
P1 = 0.0mm

D2 = 10.0mm
P2 = 0.0mm

D3 = 10.0mm
P3 = 0.0mm

D4 = 10.0mm
P4 = 0.0mm

D5 = 10.0mm
P5 = 0.0mm

D6 = 10.0mm
P6 = 0.0mm

Figure 8 - 3-Proc (Pluto, Neptune, Hyperion) Results; Design cycle 0

Figure 9 shows the optimized design for this same case. The hole diameters and
positions have been changed such that the coolant velocity constraints are all satisfied,
and their average velocity has been maximized. The optimization took three design
cycles with a total of 42 FLUENT analyses. This is a feasible design. The design

3 The initial solution results are brought into all subsequent FLUENT analyses as an initial conditions
interpolation file. This helps to speed up solution convergence.

 8

objective, velocity response, P design variable, and D design variable histories are plotted
in Figure 10, Figure 11, Figure 12, and Figure 13 respectively.

Design Cycle 3

3.6m/s 3.4m/s 3.5m/s 3.8m/s
2.3m/s

4.7m/s3.5m/s3.6m/s
3.7m/s2.1m/s

D1 = 31.8mm
P1 = 0.2mm

D2 = 6.2mm
P2 = -3.9mm

D3 = 5.4mm
P3 = -1.5mm

D4 = 6.4mm
P4 = -1.3mm

D5 = 21.4mm
P5 = 1.7mm

D6 = 12.2mm
P6 = -2.2mm

Design Cycle 3

3.6m/s 3.4m/s 3.5m/s 3.8m/s
2.3m/s

4.7m/s3.5m/s3.6m/s
3.7m/s2.1m/s

D1 = 31.8mm
P1 = 0.2mm

D2 = 6.2mm
P2 = -3.9mm

D3 = 5.4mm
P3 = -1.5mm

D4 = 6.4mm
P4 = -1.3mm

D5 = 21.4mm
P5 = 1.7mm

D6 = 12.2mm
P6 = -2.2mm

Design Cycle 3

3.6m/s 3.4m/s 3.5m/s 3.8m/s
2.3m/s

4.7m/s3.5m/s3.6m/s
3.7m/s2.1m/s

D1 = 31.8mm
P1 = 0.2mm

D2 = 6.2mm
P2 = -3.9mm

D3 = 5.4mm
P3 = -1.5mm

D4 = 6.4mm
P4 = -1.3mm

D5 = 21.4mm
P5 = 1.7mm

D6 = 12.2mm
P6 = -2.2mm

Figure 9 - 3-Proc(Pluto, Neptune, Hyper ion) Results Design cycle 3

Figure 10 - 3-Proc(P-N-H) Avg. Vel. Objective4 Function

4 For the objective function plot VisualDOC displays a red asterisk when one or more design constraints are
violated and a green asterisk when all the design constraints are satisfied.

 9

Figure 11 - 3-Proc(P-N-H) Velocity Response

Figure 12 - 3-Proc(P-N-H) Hole Per turbations (mm)

 10

Figure 13 - 3-Proc(P-N-H) Hole Diameters (mm)

This case shows that changes only to the gasket portion of the geometry will achieve the
desired flow conditions. Most importantly all ten sensor points in both the head and
block show coolant velocities at or above the minimum 2.0m/s. The average velocity
design objective of these ten points has risen from 3.0m/s to 3.4m/s as well.

 11

Multi-Processor Implementation

Design optimization of a FLUENT simulation requires multiple analyses. For large CFD
models, this will require vast amounts of CPU time. Utilization of the FLUENT parallel
solver certainly helps, but since the gradient calculations during optimization require
numerous prescribed analyses these discrete jobs may be run in parallel as well to further
increase efficiency. Combining these two approaches provides the user with an
opportunity to use large numbers of compute nodes, if available. In such a scheme, the
finite difference calculations of the optimization algorithm will be parallelized,
potentially using as many compute nodes as the number of design variables. However,
each one of these compute nodes then becomes a master node from which the FLUENT
simulation will parallelize to sub-nodes, thus providing a two-level parallel
implementation.

As stated in Chapter 28.1 of the FLUENT users guide: ” The parallel process methods
integral to FLUENT can automatically partition the fluid grid into multiple sub-domains
such that the number of partitions is an integral multiple of the number of compute nodes
available to the user. These processes can be compute nodes on a massively parallel
computer, processes on a multiple-CPU workstation, or processes on a network of
heterogeneous workstations running UNIX or on a network of workstations running
Windows. In general, as the numbers of compute nodes increases, turnaround time for
the solution will decrease. However, parallel efficiency decreases as the ratio of
communication to computation increases, so there is a point of diminishing returns when
considering model size versus number of compute nodes.” Since the Z-Flow FLUENT
model is small, this category of parallel processing was not used for this task.

Parallel processing has the potential to reduce the time requirements such that general-
purpose optimization becomes practical for a wide range of industrial applications. As
the number of design variables increases, the bulk of the computational time required
completing the optimization is consumed by the finite difference gradient calculations.
Each design iteration calculates a set of gradients used to determine a search direction for
the optimization algorithm during the one-dimensional search. The default in
VisualDOC is to use forward finite difference calculations, which requires as many
analyses as there are independent design variables for each set of gradient calculations.
Since the analyses required during the finite difference calculations are independent of
each other, these calculations are good candidates for parallel computing. Indeed, when
the number of parallel processors is greater than or equal to the number of independent
design variables, each set of finite difference calculations may be performed in the same
time it takes to complete a single analysis.

The freely available LAM5 system is a set of programs and libraries that allows a cluster
of workstations connected with a local area network to be used as a parallel processing

5 Local Area Multicomputer (LAM) is developed and maintained by Ohio State University.
 (http://www.lam-mpi.org)

 12

computer. LAM contains an implementation of the MPI6 standard that allows for
dynamic load balancing. The LAM system was used to implement a parallel version of
VisualDOC using existing UNIX and Linux workstations available at VR&D.

The VisualDOC analysis module is parallelized using a master-slave paradigm where the
master process allocates the tasks to all available slave processors (see Venter &
Watson[1], and Smith[2]). When a slave finishes its current task, it immediately becomes
available so that another task may be allocated to it. This paradigm is ideally suited to a
heterogeneous parallel environment, such as a local area network of workstations,
because it is intrinsically load balanced. That is to say, faster processors will be allocated
more tasks. Additionally, this scheme requires only minimal inter-processor
communication. The design variables are sent to the slaves, and the response values are
sent back to the master. A single slave process running on the same processor as the
master process performs all the remaining analyses required during the optimization (e.g.
one-dimensional search analyses).

VR& D Multiple Processors

Three different computing platforms with a combined total of four processors were used
to optimize the Z-Flow cooling model.

• Neptune – SGI Octane Workstation with IRIX OS, 1 CPU

• Pluto – HP C3600 Workstation with HP-UX OS, 1 CPU

• Hyperion – Windows NT Pentium III Workstation with LINUX OS, 2-733MHz
CPUs

Multi-Processor Results

The following results show solution differences due only to the number and type of
processors used. All VisualDOC optimization and FLUENT set-ups are identical. The
results are listed in Table 1 and presented graphically in Figure 14.

Each of the three different types of processors was run separately to establish CPU
characteristics for each processor. These are runs 1-3 for Neptune, Pluto, and Hyperion
respectively. It is interesting to note the differences for those design cycles listed as well
as the total number of design cycles at convergence for exactly the same optimization
problem. Even though there is only about a 3% difference between the final optimized
objectives, the analysis path is different depending on the processor combination chosen.
The analysis path variation is even more pronounced for the multi-processor
optimizations. VR&D believes this is due to the different machine precision of the

6The Message Passing Interface (MPI) standard means true portability for parallel programs. It defines the
necessary infrastructure for third party software products and will enable a wider proliferation of parallel
technology.

 13

processors used. The difference in the solutions due to the machine precision is just
slightly less than the actual solution difference due to small perturbations of the design
variables. This “solution noise” affects the gradient calculations, which in turn affects
the one-dimensional search results. The VisualDOC finite difference move limits for this
problem were chosen based on considerations such as these.

Run 1 2 3 4 5 6
Processor 1 Neptune Pluto Hyperion Hyperion Pluto Pluto
Processor 2 Hyperion Neptune Neptune
Processor 3 Hyperion Hyperion
Processor 4 Hyperion
Objective (DC 0) 2. 96 2. 98 2. 96 2. 96 2. 98 2. 98

Objective (DC 1) 3. 39 3. 24 3. 34 3. 34 3. 23 3. 26

Objective (Maximum) 3. 41 3. 34 3. 41 3. 41 3. 42 3. 45

No. Design Iterations 5 5 16 16 3 6

Total Analysis Calls 75 72 235 235 42 89
Total Time (Sec) 23153 18114 40274 26932 3485 5891

Time/Iteration 4631 3623 2517 1683 1162 982

Table 1 - VisualDOC Multi-Processor Summary Table

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6

Run Number

T
im

e/
It

er
at

io
n

Neptune

Pluto

Hyperion

Hyperion
Hyperion

Pluto
Neptune
Hyperion

Pluto
Neptune
Hyperion
Hyperion

Figure 14 - VisualDOC Multi-Processor Summary Char t

 14

Conclusions

The goal of this paper is two-fold: demonstrate a method to optimize a FLUENT CFD
simulation using VisualDOC, and demonstrate the efficiency of a virtual parallel
processor using VisualDOC.

Initially the Z-Flow design did not satisfy the minimum fluid velocity requirements at
two of the ten response points. After optimization, all velocity constraints are satisfied
and the average velocity of the ten points went up by 15%.

The Z-Flow CFD optimization used 12 design variables and up to 4 parallel processors.
Figure 14 clearly shows the benefits realized when the finite difference gradient
calculations are parallelized. For this optimization problem, the slowest time per design
iteration is 4631 seconds using a single processor on Neptune. The fastest time per
design iteration is 982 seconds using four processors. The virtual 4-CPU processor
exhibits a factor of five enhancement in time over the single CPU on Neptune.

References

[1] G. Venter & B. Watson, “Exploiting Parallelism in General Purpose Optimization” ,

Vanderplaats Research and Development, Colorado Springs, CO.

[2] Smith, S.L., and Schnabel, R.B., “Centralized and Distributed Dynamic Scheduling

for Adaptive, Parallel Algorithms”, Unstructured Scientific Computation on Scalable
Multiprocessors, eds. P. Mehrotra, J. Saltz, and R. Voigt, MIT Press, Cambridge,
MA, pp.301-322, 1992.

