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Abstract 
 
This paper presents and describes a scheme to optimize the cooling efficiency of a 
contrived two-dimensional Z-flow cooling system.  The FLUENT CFD code is used to 
analyze the steady state flow characteristics of variable flow-hole geometries between the 
“block”  and the “head” portion of the fluid model.  The VisualDOC general-purpose 
optimization code is used to determine the optimum geometry that satisfies minimum 
fluid velocity constraints at ten fluid locations.   A gradient-based optimization algorithm 
is chosen to investigate its performance as a candidate scheme for CFD problems with 
larger numbers of design variables.  Because optimization algorithms require numerous 
analyses VisualDOC is used to solve this problem utilizing a distributed1 heterogeneous2 
system of from one to four CPU’s. 
 
 
Problem Description 
 
Vanderplaats Research and Development (VR&D) has worked closely with FLUENT 
technical specialists to incorporate geometric design optimization with the two-
dimensional Z-flow cooling system shown in Figure 1.   
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Figure 1 – Z-Flow Cooling System 

                                                
1 Distributed computing systems are characterized by the various CPU’s residing on different platforms.  
This is in contrast to parallel computing systems with multiple CPU’s residing on the same platform. 
2 Heterogeneous computing systems are distributed systems comprised of different types of platforms (e.g. 
different hardware and/or operating systems). 
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Coolant enters the block portion of the model and exits the head as shown by the arrows.  
The cooling jacket hole geometry in the gasket may be modified to produce an optimum 
flow condition as calculated by the FLUENT CFD program.  Ten locations are chosen to 
monitor the coolant velocity response.  Design constraints are defined such that all 
response locations must satisfy a minimum velocity requirement of 2.0m/s.  The design 
objective is to maximize the fluid velocity averaged at the ten locations by varying each 
hole diameter and location (offset from center).  
 
Fluid Meshing 
 
GAMBIT is used to mesh the fluid in the Z-Flow cooling model.  Hole zone regions 
surrounding each hole are re-meshed each time VisualDOC performs an analysis call.   
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Figure 2 – Design Variable Definition 

 
VisualDOC automatically updates a parameterized gambit journal file to reflect the 
design variable changes.  Figure 2 shows how D1 and P1 are used to adjust the geometry 
of each hole, which in turn affects the adjacent fluid mesh. 
 
GAMBIT re-meshes the local region surrounding each hole based on twelve updated 
design variables D1-D6 and P1-P6.  The new mesh is then combined with a pre-existing 
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mesh file of the rest of the model using TMERGE.  Figure 3 shows how GAMBIT and 
TMERGE create an updated mesh file that is ready for FLUENT analysis.  Figure 4 
shows a close-up of the hole-zone re-mesh along with the adjacent block and head mesh. 
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Figure 3 - Meshing Scheme Used for Optimization I terations 
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Figure 4 - Close-Up of Hole 1 Mesh  
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FLUENT CFD Analysis 
 
VisualDOC automatically executes FLUENT using a journal file that reads in the up-
dated Z-Flow mesh file. An interpolation file containing the FLUENT solution for the 
initial configuration is used to initialize the FLUENT solver to speed up solution 
convergence.  Both first and second order upwind schemes for discretization of field 
variables are run as well as two passes of velocity gradient mesh adaptation.  This is 
shown graphically below in Figure 5. 
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Figure 5 - FLUENT Residuals versus Solver I terations 

The goal of the VisualDOC optimization is to ensure that the coolant velocity at ten 
locations all have velocities of at least 2.0m/s.  These are design constraints and as such, 
their response values must be passed to the optimizer.  For this problem, the velocity 
response is defined as FLUENT point-surface entities (FLUENT => Surface => Point).  
The point-surface response is exported as a Tecplot formatted file from which 
VisualScript may extract the FLUENT velocities. 
 

 

TI TLE = ” Sampl e Tecpl ot  Fi l e"
VARI ABLES  = X,  Y,  " Vel oci t y  Magni t ude"
ZONE T=" bl ock_poi nt _1" ,  N=1,  E=1,  ET=TRI ANGLE,  F=FEBLOCK

8. 80000e- 02

- 5. 00000e- 02

3. 62145e+00
1  
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VisualScript Job Control 
 
VisualScript is a stand-alone program provided by VR&D to allow easy coupling 
between VisualDOC and one or more existing analysis programs, as required to perform 
design optimization.  The control and execution for this problem is graphically shown in 
Figure 6. 
 

 

Figure 6 - VisualScript Flow Diagram 

 
As previously described, the parameterized GAMBIT journal file is modified with 
perturbed VisualDOC design variables (e.g. D1-D6, & P1-P6).  TMERGE combines the 
GAMBIT re-meshed hole zones with the unchanged portion of the fluid mesh.  The 
FLUENT journal file execution in this flow exports the velocity response file. 
 
The geometry constraint requires explanation that is more detailed.  The relationship 
between each hole diameter and its X-perturbation from the gasket centerline must 
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constrain improbable geometry's (e.g. a positive perturbation plus the radius of the hole 
must be less than 25mm).  This geometric constraint is shown in Figure 7.  
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Figure 7 - Geometr ic Constraint 

 
Normally, design variables that fall between their upper and lower bounds do not pose an 
operational problem if they violate the geometric constraint above (e.g. D1=40, & 
P1=20).  The resulting design is analyzed and is simply deemed infeasible due to the 
violated constraint.  The optimizer continues with its design variable search strategy to 
find a feasible design.  However, for this particular problem GAMBIT will fail to re-
mesh the regions surrounding the holes if the geometric constraint is violated.  This is 
why the “Geometry Constraint”  block exists in the flow diagram of Figure 6. It allows 
VisualScript to exit the script if this constraint is violated, and thus avoid a GAMBIT 
hard failure.  When this happens, VisualDOC revises its search strategy accordingly. 
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Optimization Results 
 
All optimization results in this report have the following characteristics in common: 
 
                  Opt i mi zat i on Met hod :  SQP(Sequential Quadratic Programming) 
                            Obj ect i ve :  Maxi mi ze 
                 Const r ai nt  Tol er ance :  - 0. 03 
        Vi ol at ed Const r ai nt  Tol er ance :   0. 003 
              Gr adi ent s Cal cul at ed By :  Fi r st  For war d Di f f er ence 
      Rel at i ve Fi ni t e Di f f er ence St ep :   0. 25 
       Mi ni mum Fi ni t e Di f f er ence St ep :   3. 00 

 
The optimization statement for this problem is: Maximize the fluid velocity averaged at 
ten response points by varying each hole diameter  and lateral displacement subject 
to minimum velocity constraints of 2.0 m/s at each response location. 
 
Figure 8 lists the FLUENT velocity magnitude at ten points that are required to have a 
minimum coolant velocity.  Design cycle 0 shows the results that were calculated using 
the initial design variable values3 (which are also shown in the Figure).  Note that two 
points have fluid velocities that are less than 2.0 m/s, which means this initial design is 
not feasible.  
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Figure 8 - 3-Proc (Pluto, Neptune, Hyperion) Results; Design cycle 0 

 
Figure 9 shows the optimized design for this same case.  The hole diameters and 
positions have been changed such that the coolant velocity constraints are all satisfied, 
and their average velocity has been maximized.  The optimization took three design 
cycles with a total of 42 FLUENT analyses.  This is a feasible design. The design 

                                                
3 The initial solution results are brought into all subsequent FLUENT analyses as an initial conditions 
interpolation file.  This helps to speed up solution convergence. 
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objective, velocity response, P design variable, and D design variable histories are plotted 
in Figure 10, Figure 11, Figure 12, and Figure 13 respectively.   
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Figure 9 - 3-Proc(Pluto, Neptune, Hyper ion) Results Design cycle 3 

 

 
Figure 10 - 3-Proc(P-N-H) Avg. Vel. Objective4 Function 

 

                                                
4 For the objective function plot VisualDOC displays a red asterisk when one or more design constraints are 
violated and a green asterisk when all the design constraints are satisfied. 
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Figure 11 - 3-Proc(P-N-H) Velocity Response 

 

 
Figure 12 - 3-Proc(P-N-H) Hole Per turbations (mm) 
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Figure 13 - 3-Proc(P-N-H) Hole Diameters (mm) 

 
This case shows that changes only to the gasket portion of the geometry will achieve the 
desired flow conditions.  Most importantly all ten sensor points in both the head and 
block show coolant velocities at or above the minimum 2.0m/s.  The average velocity 
design objective of these ten points has risen from 3.0m/s to 3.4m/s as well. 
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Multi-Processor Implementation 
 
Design optimization of a FLUENT simulation requires multiple analyses.  For large CFD 
models, this will require vast amounts of CPU time.  Utilization of the FLUENT parallel 
solver certainly helps, but since the gradient calculations during optimization require 
numerous prescribed analyses these discrete jobs may be run in parallel as well to further 
increase efficiency.  Combining these two approaches provides the user with an 
opportunity to use large numbers of compute nodes, if available.  In such a scheme, the 
finite difference calculations of the optimization algorithm will be parallelized, 
potentially using as many compute nodes as the number of design variables.  However, 
each one of these compute nodes then becomes a master node from which the FLUENT 
simulation will parallelize to sub-nodes, thus providing a two-level parallel 
implementation. 
 
As stated in Chapter 28.1 of the FLUENT users guide: ” The parallel process methods 
integral to FLUENT can automatically partition the fluid grid into multiple sub-domains 
such that the number of partitions is an integral multiple of the number of compute nodes 
available to the user.  These processes can be compute nodes on a massively parallel 
computer, processes on a multiple-CPU workstation, or processes on a network of 
heterogeneous workstations running UNIX or on a network of workstations running 
Windows.  In general, as the numbers of compute nodes increases, turnaround time for 
the solution will decrease.  However, parallel efficiency decreases as the ratio of 
communication to computation increases, so there is a point of diminishing returns when 
considering model size versus number of compute nodes.”   Since the Z-Flow FLUENT 
model is small, this category of parallel processing was not used for this task. 
 
Parallel processing has the potential to reduce the time requirements such that general-
purpose optimization becomes practical for a wide range of industrial applications.  As 
the number of design variables increases, the bulk of the computational time required 
completing the optimization is consumed by the finite difference gradient calculations.  
Each design iteration calculates a set of gradients used to determine a search direction for 
the optimization algorithm during the one-dimensional search.  The default in 
VisualDOC is to use forward finite difference calculations, which requires as many 
analyses as there are independent design variables for each set of gradient calculations.  
Since the analyses required during the finite difference calculations are independent of 
each other, these calculations are good candidates for parallel computing.  Indeed, when 
the number of parallel processors is greater than or equal to the number of independent 
design variables, each set of finite difference calculations may be performed in the same 
time it takes to complete a single analysis. 
 
The freely available LAM5 system is a set of programs and libraries that allows a cluster 
of workstations connected with a local area network to be used as a parallel processing 

                                                
5 Local Area Multicomputer (LAM) is developed and maintained by Ohio State University. 
 (http://www.lam-mpi.org) 
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computer.  LAM contains an implementation of the MPI6 standard that allows for 
dynamic load balancing.  The LAM system was used to implement a parallel version of 
VisualDOC using existing UNIX and Linux workstations available at VR&D. 
 
The VisualDOC analysis module is parallelized using a master-slave paradigm where the 
master process allocates the tasks to all available slave processors (see Venter & 
Watson[1], and Smith[2]).  When a slave finishes its current task, it immediately becomes 
available so that another task may be allocated to it.  This paradigm is ideally suited to a 
heterogeneous parallel environment, such as a local area network of workstations, 
because it is intrinsically load balanced.  That is to say, faster processors will be allocated 
more tasks.  Additionally, this scheme requires only minimal inter-processor 
communication.  The design variables are sent to the slaves, and the response values are 
sent back to the master.  A single slave process running on the same processor as the 
master process performs all the remaining analyses required during the optimization (e.g. 
one-dimensional search analyses). 
 
VR& D Multiple Processors 
  
Three different computing platforms with a combined total of four processors were used 
to optimize the Z-Flow cooling model.   
 

• Neptune – SGI Octane Workstation with IRIX OS, 1 CPU 
 

• Pluto – HP C3600 Workstation with HP-UX OS, 1 CPU 
 

• Hyperion – Windows NT Pentium III Workstation with LINUX OS, 2-733MHz 
CPUs 

 
 
Multi-Processor Results 
 
The following results show solution differences due only to the number and type of 
processors used.   All VisualDOC optimization and FLUENT set-ups are identical.  The 
results are listed in Table 1 and presented graphically in Figure 14.   
 
Each of the three different types of processors was run separately to establish CPU 
characteristics for each processor.  These are runs 1-3 for Neptune, Pluto, and Hyperion 
respectively.   It is interesting to note the differences for those design cycles listed as well 
as the total number of design cycles at convergence for exactly the same optimization 
problem.  Even though there is only about a 3% difference between the final optimized 
objectives, the analysis path is different depending on the processor combination chosen.  
The analysis path variation is even more pronounced for the multi-processor 
optimizations.  VR&D believes this is due to the different machine precision of the 

                                                
6The Message Passing Interface (MPI) standard means true portability for parallel programs. It defines the 
necessary infrastructure for third party software products and will enable a wider proliferation of parallel 
technology. 
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processors used.  The difference in the solutions due to the machine precision is just 
slightly less than the actual solution difference due to small perturbations of the design 
variables.  This “solution noise”  affects the gradient calculations, which in turn affects 
the one-dimensional search results.  The VisualDOC finite difference move limits for this 
problem were chosen based on considerations such as these. 
 

Run 1 2 3 4 5 6
Processor   1 Neptune Pluto Hyperion Hyperion Pluto Pluto
Processor   2 Hyperion Neptune Neptune
Processor   3 Hyperion Hyperion
Processor   4 Hyperion
Objective (DC 0) 2. 96 2. 98 2. 96 2. 96 2. 98 2. 98

Objective (DC 1) 3. 39 3. 24 3. 34 3. 34 3. 23 3. 26

Objective (Maximum) 3. 41 3. 34 3. 41 3. 41 3. 42 3. 45

No. Design Iterations 5 5 16 16 3 6

Total Analysis Calls 75 72 235 235 42 89
Total Time (Sec) 23153 18114 40274 26932 3485 5891

Time/Iteration 4631 3623 2517 1683 1162 982  

Table 1 - VisualDOC Multi-Processor Summary Table 
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Conclusions 
 
The goal of this paper is two-fold: demonstrate a method to optimize a FLUENT CFD 
simulation using VisualDOC, and demonstrate the efficiency of a virtual parallel 
processor using VisualDOC.   
 
Initially the Z-Flow design did not satisfy the minimum fluid velocity requirements at 
two of the ten response points.  After optimization, all velocity constraints are satisfied 
and the average velocity of the ten points went up by 15%.    
 
The Z-Flow CFD optimization used 12 design variables and up to 4 parallel processors.  
Figure 14 clearly shows the benefits realized when the finite difference gradient 
calculations are parallelized.  For this optimization problem, the slowest time per design 
iteration is 4631 seconds using a single processor on Neptune.  The fastest time per 
design iteration is 982 seconds using four processors.  The virtual 4-CPU processor 
exhibits a factor of five enhancement in time over the single CPU on Neptune. 
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