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The purpose here is to review the state of the art in design optimization relative to 
dynamics and to identify needs for the future.  The paper will begin an overview of 
optimization.  This will include a focus on sensitivity calculations and approximation 
concepts for efficient optimization.  Following this, several examples will be offered to 
demonstrate industrial applications that are currently possible.  Finally, future needs will be 
discussed. 

Nomenclature 
A = cross-sectional area 
F = force in member 
F(X) = objective function 
gj(X) = j-th inequality constraint 
K = stiffness matrix 
L = length of member 
m = number of inequality constraints 
M = mass matrix 
n = number of design variables 
P = structural load vector 
S = search direction 
u = vector of structural displacements 
Uk = numerator of Rayleigh quotient 
Tk = denominator of Rayleigh quotient 

kU  = approximate numerator of Rayleigh quotient 

kT  = approximate denominator of Rayleigh quotient 
X = vector of design variables 
x = single design varible 
δX = change in design variables 
Greek Symbols 
α = move parameter 
σ = stress 
σ  = allowable stress 
σijk = stress in element i, component j, load case k 
∂  = partial derivative 
λk = k-th eigenvalue 
Φk = k-th eigenvector 
Subscripts 
i = design variable number 
j = inequality constraint number 
x = derivative with respect to x 
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Superscripts 
L = lower bound on design variable 
New = new design 
Old = old design 
U = upper bound on design variable 
-1 = inverse 
0 = initial value 
 
 

I. Introduction 
esign optimization is by nature very computationally intensive, typically requiring from ten to thirty detailed 
finite element analyses.  Given that models of over a million degrees of freedom are now commonplace, the 

need for computational efficiency is clear.  Furthermore, optimization imposes additional needs beyond basic 
analysis.  These include the calculation of gradients of dynamic responses with respect to the design variables as 
well as creation of formal approximations for use in the optimization phase.  

Although there were various analytic approaches to structural design, numerical optimization began in earnest 
with the landmark paper of Schmit1 in 1960.  The original work was applied to stress constrained structures.  Fox2 
extended this work with the calculation of stress derivatives.  Fox and Kapoor3 expanded this further to include 
eigenvalue constraints and their derivatives.  Later, Nelson offered an improved gradient computation algorithm that 
is in common use today. Similar methods are available for calculation of direct and modal frequency response.  With 
the ability to calculate eigen responses and their derivatives, the optimization process was greatly improved as 
compared to finite difference calculations.    

During the 1970s and 1980s, approximation techniques were developed for structural optimization.  These 
approximations were primarily developed for stress constraints but were also expanded to frequency constraints.  
These methods dramatically reduced the number of detailed finite element analyses needed to achieve an optimum 
design.  Also, in recent years eigenvalue analysis methods have been developed to greatly reduce the computational 
cost of the analysis itself leading to further reductions in optimization time.   

In recent years, this technology has been added to several commercial finite element analysis programs and new 
programs have been created to provide for optimization of real structures.     

The purpose here is to review the state of the art in dynamics as related to design optimization and to identify 
needs for the future.  The paper begins with the optimization problem statement.  This includes a focus on sensitivity 
calculations and approximation concepts for efficient optimization.  Following this, several examples are offered to 
demonstrate industrial applications that are currently possible.  These include optimization of car bodies to 
maximize frequencies, ground vibration test correlation and others.   

II. The Optimization Problem Statement 
Numerical optimization solves the general problem4 Find the values of the design variables contained in X that 

will; 
 

Minimize  (1)  ( )F X

Subject to; ( ) 0 1,g X j mj ≤ =

L U

 (2) 

 1,i i iX X X i≤ ≤ =

D

n  (3)  

The function, F(X) is referred to as the objective or merit function and is dependent on the values of the design 
variables, X, which themselves include member dimensions or shape variables of a structure as examples. The limits 
on the design variables, given in Equation 3, are referred to as side constraints and are used simply to limit the 
region of search for the optimum.  

The gj(X) are referred to as constraints, and they provide bounds on various response quantities.  
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Additionally, we could include equality constraints and these can be included in the original problem definition 
as two equal and opposite inequality constraints. 

A common constraint is the limits imposed on stresses at various points within a structure. Then if σ is the 
upper bound allowed on stress, the constraint function would be written, in normalized form, as 

 1 0ijkσ
σ

− ≤  (4) 

where i = element, j = stress component and k= load condition. 
 
Objective and constraint functions are interchangeable.  For example, we may wish to maximize the fundamental 

frequency of a structure with limits on mass or minimize mass with limits on frequencies. 
Optimization methods closely model what we do in design already. Normally, we begin with a candidate design 

and ask “How can we change the design to improve it?” Thus, we modify our design as; 

 New OldX X Xδ= +  (5)  

Optimization does much the same thing, but in two steps. First, we ask what direction to move in and then we 
ask how far to move. That is, 

 New OldX X Sα= +  (6)  

where S is the search direction and α is the number of steps we move in this direction (partial steps are allowed). 
The difference in optimization algorithms is mainly in how we calculate the search direction, S, and how we do 

the “one-dimensional search” to determine α. The key point here is that all variables are considered simultaneously 
according to their effect on the objective function and all constraints. Also, since this is all automated and today’s 
computers are very fast, we can find an optimum design with much less time and effort than just finding an accept-
able design using traditional methods. 

This problem statement provides a remarkably general design approach and a multitude of methods are available 
today for solving this general problem. Much of the theoretical development has been in the operations research 
community and applications there are widespread today. In engineering, while development has been underway for 
over forty years, applications have lagged far behind. The time has come for that to change. 
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Figure 1. Growth in Optimization Problem Size 

III. Optimization Algorithms 
There are a multitude of algorithms available for 

solution of the general optimization task defined 
above.  In structural optimization, gradient based 
methods are considered to be the most efficient and 
reliable.   

Since its inception in 1960, the size of structural 
optimization tasks has grown exponentially as shown 
in Figure 1.  Today, for member sizing and shape 
optimization tasks, several thousand to over a 
hundred thousand variables are routinely considered.  
In topology optimization, the number of design 
variables often exceeds one million.  Very large 
problems with only a few active constraints can be 
routinely solved as well as small (a few hundred 
variables) problems with many active constraints.  
Recently, there has been focus on large numbers of 
design variables where there are also a large numbers 
of active constraints5 so that optimization problem 
size is no longer a limitation in design optimization. 
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IV. Gradient Computations 
As noted above, the most efficient and reliable optimization algorithms require calculating the gradients 

(sometimes called sensitivities) of the responses with respect to the design variables.  Because most design tasks 
require static stress limits in addition to dynamic constraints, we will begin with calculation of displacements, from 
which stress or strain gradients can easily be recovered.  

Gradients of displacements are calculated from the basic finite element analyses equations,  

 Ku P=  (7) 

where K is the master stiffness matrix, P is the vector of applied loads and u is the vector of displacements. 
Differentiating with respect to design variable Xi and rearranging gives2  

 1

i i

u P KK
X X X

−

i

u
⎡ ⎤∂ ∂ ∂

= −⎢ ⎥∂ ∂ ∂⎣ ⎦
 (8) 

The derivative of the stiffness matrix with respect to the design variable is often calculated by finite difference 
while the remainder of this computation is carried out analytically.  Because the stiffness matrix has already been 
decomposed, this is a simple and efficient calculation.  From this the derivatives of stresses are calculated from the 
stress recovery equations.  Equation 8 is referred to as the direct approach.  An adjoint method is also available and 
the choice of method is normally made automatically, depending on the number of design variables and the number 
of needed derivatives6. 

Derivatives of eigenvalues and eigenvectors, are calculated in a similar fashion, beginning with the basic 
eigenvalue equations 

 0k k kK MλΦ − Φ =  (9) 

The gradient of the eigenvalue with respect to a design variables is now3

 p T
p p

i i i

K M
X X X
λ

λ
∂ ⎡ ⎤∂ ∂

p= Φ −⎢∂ ∂ ∂⎣ ⎦
Φ⎥  (10) 

Equation 10 was published by Fox and Kapoor in 1965 and has been superceded by Nelson’s method7.  Nelson’s 
method is mathematically more complicated but also more efficient and is now the method of choice.  Nelson also 
provides eigenvector derivatives, making complex tasks like mode tracking possible.  Similar methods are available 
for direct and modal frequency response as well as flutter speed. 

V. Approximation Techniques 
By the end of the 1960s it was becoming apparent that numerical optimization was limited to perhaps fifty 

variables and was computationally too expensive to the a usable design tool.  This was particularly emphasized in a 
paper by Gallatly, Berke and Gibson8 when they called the 1960s “the period of triumph and tragedy” for structural 
optimization.  Thus, the 1970s began the era of optimality criteria methods.  Optimality criteria offered the ability to 
deal with large numbers of design variables but with a limited number of constraints and without the generality of 
numerical optimization methods.  Numerical optimization methods were given new life in 1974 when Schmit and 
Farshi9 published their work on approximation concepts.  These methods were based on the concept of creating 
approximations using the underlying physics to allow for large moves and this reduced the number of detailed finite 
element analyses from well over 100 to the order of ten.  For statically determinate trusses or membrane structures, 
these approximations were shown to be exact for stress and displacement constraints.  Parallel to the development of 
approximation concepts, the adjoint method for gradient computations was developed. ,6 10  Finally, in the late 1970s 
Fleury and Sanders11 reconciled numerical optimization and optimality criteria methods by showing that optimality 
criteria are closely related to duality theory in numerical optimization.   

Second generation approximations were created using force approximations12, 13 instead of the earlier stress 
approximations.  Similarly, Rayleigh quotient approximations were created for eigenvalue constraints. 14  These new 
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approximations expanded the element types to shell and frame elements among others.  Importantly, for such 
elements as frames it was now possible to treat the physical dimensions as design variables and section properties as 
intermediate variables so that the designer could now deal with the actual variables of interest. 

To understand the basic concept of formal approximations, consider the simple rod shown in Figure 2.  The 
objective is to minimize the volume subject to a stress limit.  That is, letting the design variable be the cross-
sectional area, A, 

 

Minimize    (11)                             AL

Subject to; 

         P

A

 

F
A

σ σ= ≤  (12) 

Note that the objective is linear but the constraint is nonlinear.  We could linearize 
both and repeatedly solve the problem using this approximation.  Such an approach is 
just sequential linear programming and is generally not very reliable or efficient. 

Now consider a change in variables so x = 1/A.  The problem is now 

Minimize  
L
x

 (13)  

Fxσ = ≤

Figure 2.  Simple Rod

Subject to; σ  (14) 

We’ve now converted the problem to one with a linear objective and a nonlinear 
constraint to one with a nonlinear objective with a linear constraint.  Such a problem is 
better conditioned for optimization.  Furthermore, we can create a linear approximation 
to the constraint and keep the original objective, since it is easily calculated, along with 
its derivatives.   

That is, 

 0
X Xσ σ σ δ≈ + ∇ •  (15) 

This approach was offered by Schmit and Farshi9 in the 1970s and this allowed us to solve structural 
optimization problems of rods and membranes with an order of magnitude improvement in efficiency. 

In the 1980s, Bofang,12 and Vanderplaats and Selajeghgh13 proposed approximating the force on the elements 
instead of approximating the stress. 

Thus, 

 
0

AF F
A

Aδσ + ∇ •
≈  (16) 

This is actually a higher order approximation and is also applicable to elements other than rods and membranes. 
For eigenvalues,   Canfield14 proposed approximating the numerator and denominator of the Rayleigh quotient, 

 
T

k k
k T

k k k

U K
T M

λ kΦ Φ
= =

Φ Φ
 (17) 
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Letting,  

 ( )0 0

1

N
kk k i
ii

UU U X X
X

=

∂
= + −

∂∑ i   and  ( )0

1

N
kk k i
ii

T 0
iX X

X
=

∂
= + −

∂∑T T  (18) 

The eigenvalue is now approximated as 

 U
T

λ =  (19) 

Similar approximations are available for complex 
eigenvalues and frequency response. 
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Figure 3 shows the organization of a modern 
structural optimization program.  The general 
approach is to first perform an analysis and evaluate 
all constraints.  These are then screened to eliminate, 
temporarily,  those that are not critical or near critical.  
Then, the sensitivity analysis is performed.  The 
approximate problem is then generated and solved.  
The key points are that the approximations are based 
on physics and are of very high quality and that the 
optimizer never actually calls the finite element 
analysis.  The result is that optimization normally 
requires only 10 or so detailed finite element analyses 
to achieve an optimum, even when there are very 
large numbers of design variables and constraints. 

In recent years, topology optimization has become 
popular.  Here, given a design volume filled with 
material, the objective is to find the stiffest structure 
using a specified fraction of the material.  This is a 
powerful tool for defining an initial structure for later 
refinement using shape and sizing optimization. 

 
  Figure 3.  Modern Structural Optimization 

VI. Examples 
Examples are offered here to demonstrate the power of optimization applied to dynamics related design tasks.  

These examples are representative of design tasks that are routinely solved, except the real problems often have a 
much larger number of design variables.  Also, finite element models of one million degrees of freedom are 
becoming commonplace.  The examples given here were solved using the GENESIS15 structural optimization 
software.  This also utilizes the SMS eigensolver16-18 which is several times faster than the common Lanczos method 
for large eigenproblems. 

A. Car Body Reinforcement 
As noted above, structural optimization is more advanced than general purpose optimization because we can 

calculate gradients of the needed responses and because we have very high quality approximation techniques to 
provide efficiency and reliability. 

Figure 4 shows a car body model which we wish to reinforce to increase the bending and/or torsion frequency.  
This is a common task in NVH (Noise, Vibration and Harshness) design of automobiles.  While this is a test 
example, many proprietary problems of this nature have now been solved.  The largest such problem this author is 
aware of included 256,000 design variables and was solved on a personal computer. 

The approach used here was to allow every element in the model to be optimized for thickness (with a lower 
bound of the original design) with the constraint that only a specified fraction of the material may be used.  Here, 
34,560 sizing variables were used.  While somewhat difficult to see in Figure 45 (unless viewed in color), 
reinforcement was added in the areas of the firewall, rocker panels and rear fender areas. 
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Table 1 gives the increase in bending or torsion frequency for different values of added mass. 
 
 
 
 
 Table 1.  Frequency Increases 

Increase in Frequency (Hz) 
  
 
 

 
Figure 4.  Car Body Reinforcement 
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Initial First Mode: 17.4Hz

Optimal First Mode: 59.1Hz

 
Figure 5.  Heat Shield Optimization 

 
Figure 6.  Test Article 
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Trailing Edge Accelerometers

SPAR
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Figure 7.  Analysis Model 

 
 

Added
Mass 
(Kg) 

Maximize First 
Torsion 

Frequency  
 
 

Maximize First 
Bending 

Frequency 
2.64 4.81 6.42 
7.32 7.56 9.89 

 15.06 9.66 11.22  
 
 
 
 

Each optimization required about ten detailed finite element analyses.  Without optimization, such tasks often 
require several months and many more analysis runs without achieving comparable results. 

B. Heat Shield Optimization 
Figure 5 shows a small (about 30 cm. on a side) heat shield used on an aircraft.  The part was modeled with just 

under 1000 shell elements.  The optimization task was created automatically using over 500 shape design variables.  
It is desired to add a bead pattern in order to increase the first bending frequency without increasing the mass.  The 
initial design has a frequency of 17.4 Hz.  The frequency was increased to 59.1 Hz. 

C. Ground Vibration Test 
A common issue in aeroelastic analysis is to adjust 

the finite element model to correlate with a vibration 
test.  Figure 6 shows a test article for a business jet and 
Figure 7 shows the analysis model with the shaker and 
accelerometer locations.19

 

The objective here is to match the first seven eigenvalues and 
eigenvectors by adjusting the section properties of the beam 
model.  Traditionally, this is done by making many runs, changing 
the section properties based on experience, to match the results.  
Here, GENESIS was used to adjust the section properties to match 
the responses.  Table 2 shows the results of the initial model, 
vibration test, traditional approach and optimization approach.  
The MAC is the Modal Assurance Criteria and is a measure of 
how good the mode shapes are captured.  Note that, for the initial 
model, modes 6 and 7 are reversed from the test.  Mode tracking 
was used in optimization so that at the optimum, the calculated 
modes are in order.  The traditional approach was able to achieve 
this as well.  The difference is that the traditional method required 
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about one week while the optimization approach required about one day, achieving comparable results to those 
achieved by an experienced analyst.  

 
Table 2.  Results 

Test Initial FEM MACii Traditional MACii  Optimization  MACii  
Eigenvalue Eigenvalue Eigenvector Eigenvalue Eigenvector Eigenvalue Eigenvector Mode 

1 21.57 21.03 0.97 21.57 0.96 0.96 21.58 
2 31.01 29.23 0.98 31.00 0.98 0.98 31.01 
3 55.78 52.63 0.97 55.81 0.97 0.97 55.78 
4 60.28 58.72 0.89 60.26 0.88 0.88 60.28 
5 63.17 64.10 0.85 63.17 0.85 0.85 63.16 
6 86.23 84.50 0.90 86.24 0.93 0.93 86.23 
7 90.48 81.82 0.88 90.42 0.87 0.89 90.48 

VII. Future Needs 
While we can routinely solve eigenvalue/eigenvector related optimization tasks as well as dynamic response 

problems, other applications are gaining in importance.  Acoustics optimization is becoming an important issue for 
both internal and external vehicle noise.  Daily solution of dynamics problems in the nonlinear regime is still mainly 
a dream.  Effective use of distributed and parallel computing requires major effort to take full advantage of coming 
hardware.  Aeroelastic optimization is still uncommon and efficient optimization techniques need development.  
Significant advances on computational dynamics are still needed.  This includes advances in basic analysis 
capabilities and associated efficient approximation techniques to limit the number of needed full finite element 
analyses in the optimization process. 

VIII. Summary 
An overview of the development of optimization emphasizing dynamics problems has been offered.  Key 

technologies that have led to the present state of the art are the ability to calculate gradient information and the use 
of very high quality approximations. Today, we can routinely solve structural optimization tasks with static and 
dynamic constraints using thousands of design variables and finite element models with millions of degrees of 
freedom.  Commercial software is available for routine application of this technology.  This software is highly 
refined and can be used with very limited knowledge of optimization theory.   

It is noted that research continues in development of even more efficient analysis and optimization methods and 
application to an even broader range of problems.  With increased emphasis on noise considerations, this is expected 
to be a key area of development. 

It is concluded that the state of the art is well refined and is readily available in the commercial environment to 
improve design quality, reduce design time and increase corporate profits.  Indeed, it is argued that no computational 
technology today is as effective as an advanced design tool as is numerical optimization. 

References 
1 Schmit, L.A., 1960, “Structural Design by Systematic Synthesis,” Proceedings, 2nd Conference on Electronic Computation, 

ASCE, New York, pp. 105-132. 
2 Fox, R. L., 1965, “Constraint Surface Normals for Structural Synthesis Techniques,” AIAA Journal, Vol. 3, No. 8, pp. 1517-

1518. 
3 Fox, R. L. and Kapoor, M. P., “A Minimization Method for the Solution of Eigenproblems Arising in Structural Dynamics,” 

Proc. of the Second Conference on Matrix Methods in Structural Mechanics, WPAFB, OH, AGGDL-Tr-68-150, 1968. 
4 Vanderplaats, G. N., Numerical Optimization Techniques for Engineering     Design - With Applications, 4th. Edition, 

Vanderplaats Research & Development, Inc., Colorado Springs, CO, 2004. 
5 Vanderplaats, G. N., “Very Large Scale Continuous and Discrete Variable Optimization,” Proc. 10th AIAA/ISSMO 

Multidisciplinary Analysis and Optimization Conference, Paper No. AIAA-2004-4458, July 30 Aug. 1, 2004 Albany, NY. 
6 Arora, J. S. and Haug, E. J., 1979, “Methods of Design Sensitivity Analysis in Structural Optimization,” AIAA Journal, Vol. 

17, pp. 970-974. 
7 Nelson, R. B., “Simplified Calculation of Eigenvector Derivatives,” AIAA J. 14, pp. 1201-1205, 1976. 
8 Gallatly, R. A., Berke, L. and Gibson, W., 1971, “The Use of Optimality Criteria in Automated Structural Design,” presented 

at the 3rd Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio. 

 
American Institute of Aeronautics and Astronautics 

 

8



9 Schmit, L. A. and Farshi, B., 1974, “Some Approximation Concepts for Structural Synthesis,” AIAA Journal, Vol. 12, pp. 
692-699. 

10 Vanderplaats, G. N., 1980, “Comment on ‘Methods of Design Sensitivity Analysis in Structural Optimization’,” AIAA 
Journal, Vol. 18, pp. 1406-1407. 

11 Fleury, C. and Sanders, G., 1977, “Relations Between Optimality Criteria and Mathematical Programming in Structural 
Optimization,” 

12 Bofang, Z. and Zhanmei, L., 1981,”Optimization of Double-Curvature Arch Dams” (In Chinese), Chinese Journal of 
Hydraulic Engineering, No. 2, pp. 11-21. 

13 Vanderplaats, G. N. and Salajegheh, E., 1989, “A New Approximation Method for Stress Constraints in Structural 
Synthesis,” AIAA J., Vol. 27 No. 3, pp. 352-358. 

14 Canfield, R. A., 1990, “High-Quality Approximations of Eigenvalues in Structural Optimization”, AIAA J., Vol. 28 No. 6, 
pp. 1116-1122. 

15 GENESIS User’s Manual, 2004, Version 7.5: Vanderplaats Research & Development, Inc., Colorado Springs, CO. 
16 Craig, R.R., and Bampton, M.C.C.,  Coupling of Substructures for Dynamic Analysis , AIAA Journal, Vol. 6, No. 7, 1968, 

pp. 1313-1319. 
17 Bennighof, J.K., and Kaplan, M.F.,  Frequency Sweep Analysis using Multi-Level Substructuring, Global Modes and 

Iteration , Proceedings of 39th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference,  
Long Beach, CA, April 1998. 

18 Watson, B.C., SMS - A Fast Eigenvalue Analysis Add-on for MSC.Nastran,Proceedings of the 2003 MSC.Software Virtual 
Product Development Conference,Dearborn, MI, Oct. 2003. 

19 Mundt, C. and Quinn, G., “Test-Analysis Correlation with Design Optimization,” Presented during the Open Technology 
Forum at the Aerospace Testing Expo 2005, North America, November 8-10, 2005, Long Beach California, USA. 
 

 
American Institute of Aeronautics and Astronautics 

 

9


	Nomenclature
	I. Introduction
	II. The Optimization Problem Statement
	III. Optimization Algorithms
	IV. Gradient Computations
	V. Approximation Techniques
	VI. Examples
	A. Car Body Reinforcement
	B. Heat Shield Optimization
	Ground Vibration Test

	VII. Future Needs
	VIII. Summary
	References

