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The SMS eigensolver is a high performance method for calculating approximate 
eigenvalues and eigenvectors for structural vibration problems.  As with many 
approximation methods, there is a tradeoff of performance versus accuracy.  The 
SMS method provides three parameters that a user can adjust to tune the 
performance/accuracy for a particular problem.  To understand how these 
parameters affect the results, it is important to understand how the SMS method 
works. 

The SMS method works by constructing a supernode elimination tree 
representation of the structural model.  The supernode elimination tree is best 
explained with a simple example.  The simple mesh in the figure below is partitioned 
into sets L, R, and I.  The partitions are defined such that set I contains the interface 
between L and R, while degrees of freedom in L and R are not connected with each 
other except through I.  The supernode elimination tree for this partitioning is 
represented with the graph on the right: 
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Each circle in the graph is a supernode that represents several nodes of the FE 
model.  The L and R partitions can be further divided, and a new elimination tree 
generated as shown in the following figure: 
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The SMS method contains powerful heuristics to automatically partition a structure 
into thousands of supernodes in an elimination tree that has dozens of levels. 

The degrees of freedom represented by the supernode are called the supernode’s 
internal degrees of freedom.  Within a supernode’s representation in the 
stiffness/mass matrix, there are terms that couple the internal degrees of freedom 
with those of possibly all of the supernodes in the chain that connects that supernode 
to the top of the elimination tree.  Any degrees of freedom of other supernodes with 
coupling terms in the matrix are called the supernode’s external degrees of freedom. 

The main idea behind SMS is to construct a reduced global eigenvalue problem by 
approximating the internal degrees of freedom of every supernode in terms of 
external degrees of freedom and some of the supernode’s fixed interface modes.  
Fixed interface modes are calculated using the mass and stiffness of the supernode 
with the external degrees of freedom constrained to zero.  In matrix terms, the 
internal degrees of freedom can be expressed as: 
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where Gi is the static condensation matrix, Φi is the supernode eigenvector matrix, 
and ξi are supernode generalized modal degrees of freedom. 

The first tunable parameter for SMS relates to how many ξi degrees of freedom to 
keep for each supernode.  If no ξi degrees of freedom are kept, then the method 
reduces to a pure static condensation, which will ordinarily give very poor 
approximations of eigenvectors.  If all of the ξi degrees of freedom are kept, then the 
method is a simple change of basis and no approximation is involved.  Research in 
component mode synthesis has shown that very high component modes are not 
needed to accurately calculate low global modes.  Using this principle, the high 
supernode fixed interface modes are discarded.  To use SMS, a desired frequency 
calculation range must be provided.  The upper bound on the frequency range, V2, is 
multiplied by SMS_PARAM1 to obtain a cutoff frequency for the ξi degrees of 
freedom.  The default value of SMS_PARAM1 results in a high fidelity reduced 
model. 

While the reduced eigenproblem is much smaller that the full system model (tens of 
thousands of degrees of freedom compared to millions of degrees of freedom), it is 
still too large to efficiently solve directly.  Eigenvalues and eigenvectors of the 
reduced problem are therefore approximated using a two phase approach.  The first 
phase condenses the reduced eigenproblem to an even smaller problem.  
SMS_PARAM2 is multiplied by V2 to obtain a secondary cutoff frequency.  Only ξi 
degrees of freedom corresponding to fixed interface modes less than this secondary 



 

cutoff are retained in the condensed problem.  The condensed problem is solved 
directly, and these eigenvectors are used to construct a starting subspace for the 
second phase.  SMS_PARAM3 is multiplied by V2 to obtain a third cutoff which 
controls the number of vectors retained in the starting subspace.  One step of 
subspace iteration is performed on the reduced eigenproblem to obtain the final 
approximate global eigenvalues. 

The three SMS tuning parameters must obey the following relationship: 

SMS_PARAM1 ≥ SMS_PARAM2 ≥ SMS_PARAM3 ≥ 1.0 

Typically, SMS_PARAM1 has the biggest influence on both the performance and the 
accuracy.  A test model of 1.7 million degrees of freedom was created to 
demonstrate the effect of this parameter.  A frequency range that contained about 
770 modes was chosen.  The chart below shows both the performance and accuracy 
of the results for various values of SMS_PARAM1.  The chart shows that a 
performance gain of about 10% can be obtained at the expense of about 3% error in 
the highest calculated frequency.   
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