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Multidisciplinary Optimization of a Transport Aircraft Wing

using Particle Swarm Optimization?

Gerhard Venter and Jaroslaw Sobieszczanski-Sobieski

Abstract The purpose of this paper is to demonstrate the ap-

plication of particle swarm optimization to a realistic multi-

disciplinary optimization test problem. The paper’s new con-

tributions to multidisciplinary optimization are the applica-

tion of a new algorithm for dealing with the unique challenges

associated with multidisciplinary optimization problems, and

recommendations to the utilization of the algorithm in future

multidisciplinary optimization applications. The selected ex-

ample is a bi-level optimization problem that demonstrates

severe numerical noise and has a combination of continuous

and discrete design variables. The use of traditional gradient-

based optimization algorithms is thus not practical. The nu-
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merical results presented indicate that the particle swarm op-

timization algorithm is able to reliably find the optimum de-

sign for the problem presented. The algorithm is capable of

dealing with the unique challenges posed by multidisciplinary

optimization as well as the numerical noise and discrete vari-

ables present in the current example problem.

1

Introduction

Particle Swarm Optimization (PSO) is a recent addition to a

growing collection of non-gradient based, probabilistic search

algorithms. Some examples of well known and widely used

algorithms include genetic algorithms (e.g., Michalewicz and

Dasgupta 1997) that models Darwin’s principle of survival

of the fittest, and simulated annealing (e.g., Nemhauser and

Wolsey 1988) that models the equilibrium of large numbers

of atoms during an annealing process. Although this class

of algorithms typically require many more function evalua-

tions than comparable gradient-based algorithms, they do pro-

vide the designer with several attractive characteristics and

has attracted much interest in recent years. For example, these
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algorithms are generally easy to implement, can efficiently

make use of large numbers of parallel processors, do not re-

quire continuity in response functions, and are better suited

for finding global or near global solutions. Although these

non-gradient based algorithms provide the designer with sev-

eral advantages, they should be applied with care. Due to their

high computational cost these algorithms should only be used

when a gradient-based algorithm is not a viable alternative,

such as integer/discrete and discontinuous problems.

Many non-gradient based search algorithms are based on

some natural phenomena and PSO is no exception. Particle

swarm optimization is based on a simplified social model that

is closely tied to swarming theory and was first introduced

by Kennedy and Eberhart (1995) and Eberhart and Kennedy

(1995). A physical analogy might be a school of fish that is

adapting to its environment. In this analogy each fish makes

use of its own memory as well as knowledge gained by the

school as a whole to efficiently adapt to its environment. Al-

though the PSO algorithm has been applied to a wide range

of engineering problems in the literature, few structural and,

especially, multidisciplinary applications are known. Exam-

ples include Fourie and Groenwold that applied the algorithm

to structural shape and sizing (Fourie and Groenwold 2000)

and to topology optimization (Fourie and Groenwold 2001)

problems.

The authors investigated the basic PSO algorithm and ap-

plied the algorithm to the minimum weight design of a ten de-

sign variable cantilevered beam problem with integer/design

variables (Venter and Sobieszczanski-Sobieski 2002). The al-

gorithm studied include a convergence criterion, dealing with

constrained and integer/discrete problems and automatic ad-

justment of the problem parameters during the optimization.

The present work will build on this previous effort and ap-

ply the PSO algorithm to the multidisciplinary optimization

of a typical transport aircraft wing. The example considered

here makes use of a bi-level approach to perform the system

level optimization of an aircraft for maximum range, account-

ing for the trade-off between the aerodynamic drag and the

structural weight. In this formulation the aerodynamic opti-

mization is performed at the system level and the structural

optimization is considered as a sub-problem at the discipline

level. The example problem includes discrete design variables

for which function evalutions can be performed only at spe-

cific discrete points, and for which no gradient information

exists between the possible discrete values. Discrete design

variables of this type can be referred to as “truly” discrete de-

sign variables. The motivation for using PSO in the present

design problem is the presence of these “truly” discrete de-

sign variables and severe numerical noise, which make the

use of a gradient-based optimizer impractical.

2

Particle Swarm Optimization Algorithm

Particle swarm optimization is based on the social behavior

that a population of individuals adapts to its environment by

returning to promising regions that were previously discov-

ered (Kennedy and Spears 1998). This adaptation to the en-

vironment is a stochastic process that depends on both the
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memory of each individual as well as the knowledge gained

by the population.

2.1

Basic Algorithm

In the numerical implementation of this simplified social model,

the population is referred to as a swarm and each individual as

a particle. The numerical implementation repeatedly updates

the position of each particle over a time period to simulate the

adaptation of the swarm to the environment. The position of

each particle is updated using the current position, a velocity

vector and a time increment. The process can be outlined as

follows:

1. Create an initial swarm, with a random distribution and

random initial velocities

2. Calculate a velocity vector for each particle, using the par-

ticle’s memory and the knowledge gained by the swarm

3. Update the position of each particle, using its velocity

vector and previous position

4. Go to Step 2 and repeat until convergence

The new position of each particle at iteration k + 1 is cal-

culated from (1)

x
i
k+1 = x

i
k + v

i
k+1∆t (1)

where: x
i
k+1

is the position of particle i at iteration k + 1;

v
i
k+1 is the corresponding velocity vector; and ∆t is the time

step value. Throughout the present work a unit time step is

used.

The velocity vector of each particle can be obtained from

one of many different formulations, depending on the par-

ticular PSO algorithm under consideration. In their previous

work, the authors examined different schemes for calculating

the velocity vector and identified the scheme introduced by

Shi and Eberhart (1998) as a good candidate. This formula-

tion is widely used in the literature and is shown in (2).

v
i
k+1 = wv

i
k + c1r1

(

p
i − x

i
k

)

∆t
+ c2r2

(

p
g
k − x

i
k

)

∆t
(2)

In (2) r1 and r2 are random numbers between 0 and 1, p
i is

the best position found by particle i so far and p
g
k is the best

position in the swarm at time k. Again, a unit time step (∆t)

is used throughout the present work. There are three problem

dependent parameters, the inertia of the particle (w), and two

“trust” parameters c1 and c2. The inertia controls the explo-

ration properties of the algorithm, with larger values facilitat-

ing a more global behavior and smaller values facilitating a

more local behavior. The trust parameters indicate how much

confidence the particle has in itself (c1) and how much confi-

dence it has in the swarm (c2).

The initial swarm is generally created with all particles

randomly distributed throughout the design space, each with

a random initial velocity vector. In the present work, (3) and

(4) are used to obtain the random initial position and velocity

vectors.

x
i
0 = xmin + r3 (xmax − xmin) (3)

v
i
0 =

xmin + r4 (xmax − xmin)

∆t
(4)
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In (3) and (4), r3 and r4 are random numbers between 0 and

1, xmin is the vector of lower bounds and xmax is the vector

of upper bounds for the design variables.

2.2

Implementation Details

The PSO algorithm implemented by the authors (Venter and

Sobieszczanski-Sobieski 2002) is discussed in detail in the

provided reference. Only the implementation details applica-

ble to the current example problem will be briefly discussed

here.

1. Convergence Criterion

A simple convergence criterion is used. Changes in the

objective function is monitored for a specified number of

consecutive design iterations. If the maximum change in

the objective function is less than a predefined allowable

change, convergence is assumed.

2. Problem Parameters

Constant trust parameter values of c1 = 1.5 and c2 =

2.5 are used. This setup puts slightly more trust in the

group than in the individual particle. The inertia weight w

is adjusted dynamically throughout the optimization. The

value is adjusted based on the coefficient of variation of

the objective function values for a 20% subset of best par-

ticles. If the coefficient of variation falls below a specified

threshold value (1.0 in the present work), the w value is

reduced using (5)

wk+1 = wkfw (5)

where fw is a constant between 0 and 1. Smaller fw values

would result in a more dramatic reduction in w, that would

in turn result in a more local search. In the present work

fw = 0.975 is used, resulting in a PSO algorithm with a

fairly global search characteristic. A starting value of w =

1.4 is used to initially accommodate a more global search

and is dynamically reduced to no less than w = 0.35. The

idea is to terminate the PSO algorithm with a more local

search.

3. Dealing with Violated Design Points

When dealing with constrained optimization problems, par-

ticles with violated constraints require special attention.

The authors introduced a new enhancement to the basic

PSO, based on the idea of usable, feasible directions e.g.,

Vanderplaats (1999). That is, a direction that would re-

duce the objective function while pointing back to the fea-

sible region of the design space. The enhancement modi-

fies the velocity vector (2) for particles with one or more

violated constraints, by re-setting the velocity vector of

particle i at iteration k to zero. The velocity vector at iter-

ation k + 1 is obtained from (6).

v
i
k+1 = c1r1

(

p
i − x

i
k

)

∆t
+ c2r2

(

p
g
k − x

i
k

)

∆t
(6)

The velocity of particle i at iteration k + 1 is thus only

influenced by the best point found so far for that particle

and the current best point in the swarm. If both these best

points are feasible, the new velocity vector will point back

to a feasible region of the design space. Otherwise, the

new velocity vector will point to a region of the design
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space that resulted in smaller constraint violations. The

result is to have the violated particle move back towards

the feasible region, or at least a less violated region, of the

design space in the next design iteration.

Although the system level optimization problem where

the PSO algorithm is applied is an unconstrained prob-

lem in the present work, the above modification is still

useful for design points that have a new position x
i
k+1

outside the design variable bounds. The position of these

points are reset to the closest bound to avoid analyzing any

points outside the specified design space, and the velocity

vector is modified as shown in (6).

4. Craziness Operator

To avoid premature convergence of the PSO algorithm ad-

ditional randomness is introduced using a craziness op-

erator. The craziness operator acts similarly to the muta-

tion operator in genetic algorithms. The craziness opera-

tor used here, changes both the position and the velocity

vector of affected particles. The position of the particles

are changed randomly, while the velocity vector of each

modified particle is reset to only the second term of (2) as

shown in (7).

v
i
k+1 = c1r1

(

p
i − x

i
k

)

∆t
(7)

The particles that will be affected are identified using the

coefficient of variation for the objective function values

of all particles, at the end of each design iteration. If the

coefficient of variation falls below a predefined threshold

value, it is assumed that the swarm is becoming too uni-

form. In this case, particles that are located far from the

center of the swarm are identified, using the standard devi-

ation of the position coordinates of the particles. Particles

that are located more than 2 standard deviations from the

center of the swarm are subjected to the craziness opera-

tor. In the present work, a coefficient of variation thresh-

old value of 0.1 is used.

3

MDO Formulation

Multidisciplinary design optimization can be described as a

methodology for the design of systems where interaction be-

tween several disciplines is considered and there are design

variables that directly affect more than one of the disciplines.

Multidisciplinary design optimization problems typically have

increased computational requirements and organizational com-

plexity as compared to single discipline optimization. Many

different approaches have been proposed to deal with these

additional challenges, with Sobieszczanski-Sobieski and Haftka

(1996) providing a survey of developments in aerospace de-

sign.

The added computational burden is associated with an

increase in the number of design variables, since variables

from the different disciplines are now considered at the same

time. The organizational complexity is related to the coupling

of different discipline level software into a single software

system. The complexity of the interaction between the dis-

ciplines vary greatly from application to application, but is

generally not just a straightforward transfer of data.
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In the present work the multidisciplinary design of a typ-

ical transport aircraft wing is considered. Here the goal is

to simultaneously optimize aerodynamic drag and structural

weight, similar to the problem introduced by Garcelon et al.

(1999). The aerodynamic analysis is simplified by specify-

ing a “reasonable” pressure distribution in the chord-wise and

span-wise directions of the wing. This simplified aerodynamic

analysis is coupled with a commercially available finite ele-

ment structural analysis code, GENESIS (2001). Although

the aerodynamic analysis is simplified, the data transfer be-

tween the aerodynamic and the structural disciplines is non-

trivial. First the aerodynamic analysis provides a pressure dis-

tribution that is converted to concentrated nodal forces for the

structural analysis. The resulting structural deformations, in

turn, influences the aerodynamic pressure distribution, result-

ing in a circular dependency between the two disciplines. Ad-

ditionally, changes in the aerodynamic design variables, like

the aspect ratio and depth-to-chord ratio, affect the structural

finite element model.

A two-level approach similar to that proposed by Garcelon

et al. (1999) is used here. The system-level optimization ma-

nipulates the overall wing geometry and operates on the dis-

crete structural variables, which include the number of ribs

and spars and the type of wing cover construction. The contin-

uous variables within each type of construction are allocated

to the structural sub-optimization. By using this bi-level ap-

proach the organizational and computation burden associated

with the problem are significantly reduced. First interactions

between the two disciplines are isolated. Second, the bi-level

approach allows for simplified initial analysis tools, for exam-

ple the aerodynamic analysis used here, that may be replaced

by a more detailed analysis at a later time. Third, it is possi-

ble to take advantage of state-of-the-art software at the dis-

cipline level. For example, GENESIS makes use of advanced

approximation concepts to reduce the computational effort for

structural optimization problems. By using GENESIS to per-

form the structural optimization as a sub-problem, the overall

computational cost is reduced.

3.1

Outline of Optimization Process

The bi-level approach used here, considers the aerodynamic

optimization at the system level, where the goal is to maxi-

mize the range. This is an unconstrained problem. The struc-

tural optimization is done as a sub-problem at the discipline

level. The goal is to minimize the weight of the wing, sub-

ject to stress and local buckling constraints. Note that reduc-

ing the structural weight is equivalent to increasing the range,

and thus a consistent objective is used at both levels of the

proposed approach. The approach may be summarized as fol-

lows:

1. Initialize all the design variables

2. Update the structural finite element model according to

the current values of the system level design variables

3. Calculate the aerodynamic pressure distribution and con-

vert to concentrated nodal forces applied to the wing finite

element model
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4. Use GENESIS to solve the structural sub-problem based

on the current aerodynamic loads

5. Calculate the aerodynamic drag

6. Calculate the range

7. Use PSO to change the system level design variables and

go back to Step 2 until convergence

4

MDO Example Problem

The PSO algorithm is applied to the multidisciplinary design

of a typical long-range transport aircraft wing in the Boeing

767 class, similar to that of Garcelon et al. (1999). Two in-

dependent load cases are considered, a 3.75 G maneuver and

a -1.5 G maneuver. The wing is optimized relative to a refer-

ence wing with properties summarized in Table 1. Note that

the wing area (S), the take off gross weight (TOGW ), the

root chord to tip chord ratio (ct/cr) and the sweep angle (p)

are all assumed to be constant.

4.1

System Level Optimization

The aerodynamic optimization is performed at the system level.

The goal of the system level optimization is to maximize the

range of the wing by changing the aspect ratio (A), the depth-

to-chord ratio (h/c), the number of internal spars, the number

of internal ribs, and the type of wing cover construction. The

system level optimization problem is thus an unconstrained

Table 1 Reference wing properties

Parameter Value

Span (bref ) 120 ft

Root Chord (crref ) 0.5 ft

Drag (Dref ) 4000 lbs

Range (Rref ) 5000 n. mi.

Area (S) 2100 ft2

Take off Gross Weight (TOGW ) 300000 lbs

Aspect Ratio (Aref ) 6.8571

(h/c)
ref

Ratio 0.12

ct/cr Ratio 0.4

Sweep (p) 25/120

problem with five design variables, three of which are discrete

variables.

The range is calculated using the simplified Breguet for-

mula that does not account for the required fuel reserve, as

shown in (8)

R = Cr
L

D
ln

(

TOGW

Wc + Wp + Wopt

)

(8)

where: R is the range; L the lift; D the total drag; Wc the non-

structural weight; Wp the payload weight; Wopt the struc-

tural weight and Cr is a constant. The take-off gross weight

TOGW includes all the weight components TOGW = Wc+

Wp +Wopt +Wf , where Wf is the fuel weight. In the present

work, a structural sub-optimization of the reference wing gen-

erates Wopt and the range of the reference wing (5000 n. mi.)

is used to obtain a Cr value of 155.81. The following as-

sumptions are maintained: Wc = 0.48 TOGW and Wp =

0.13 TOGW . Additionally, the lift (L) must equal the TOGW ,
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which is considered constant in the present work. With these

assumptions, the range formula is simplified as shown in (9).

R = Cr
TOGW

D
ln

(

TOGW

0.61 TOGW + Wopt

)

(9)

Equation (9) represents the system level objective function

for the aerodynamic optimization and consists of two des-

ignable components: D and Wopt. Wopt is the weight from

the structural sub-optimization problem factored by 1.3 to ac-

count for structural non-optimum weight and D is the total

drag obtained from the aerodynamic analysis. The structural

sub-optimization problem and the aerodynamic analysis are

discussed in more detail in the following sections.

The finite element model of the wing-box for the refer-

ence wing with three spars and nine ribs is shown in Fig. 1.

For the present design problem the front and back spars and

the ribs at the root and tip of the wing are always present.

However, the internal spar is optional (the number of inter-

nal spars is allowed to vary between zero and one) and the

number of internal ribs is allowed to vary between zero and

seven. The rib spacing (Srib) is a constant and equal to Srib =

bref/(Nrib max + 1), where Nrib max = 7 is the maximum

number of allowable internal ribs. The internal ribs are always

placed from the root out, observing the rib spacing Srib, with

the number of internal ribs obtained from the corresponding

discrete system level design variable. Additionally, the con-

struction of the upper and lower wing covers are selected from

either a sandwich or a hat-stiffened construction.

Fig. 1 Reference wing-box structural finite element model

4.2

Structural Sub-Optimization

For the structural sub-optimization problem, a simplified fi-

nite element model is used to model the wing-box. The wing-

box model consists only of shell elements and, for simplic-

ity, the spar and rib caps are not modeled. It is assumed that

the wing-box is manufactured from aluminum with a density

of 0.1 lb/in3, an allowable tensile strength of 50 ksi and an

allowable compression strength of 25 ksi. The reference fi-

nite element mesh used in the analysis is shown in Fig. 1 and

consists of 72 nodes and 72 shell elements. During the sys-

tem level optimization, the number of finite elements used to

model the wing-box varies between 50 and 72 depending on

the number of internal spars and ribs for the current config-

uration. The nodes shown on the leading and trailing edges

of Fig. 1 are non-structural and are included only to trans-

fer aerodynamic loads from the aerodynamic analysis to the

structural analysis. The load transfer is done using rigid ele-

ments that do not add stiffness to the finite element model.

The goal of the structural sub-optimization problem is to

minimize the weight of the wing-box by changing the thick-
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ness values of the shell elements, subject to allowable stress

and local buckling constraints. The number of design vari-

ables in the structural sub-optimization problem depends on

the number of internal spars and ribs and the upper and lower

wing cover construction selected at the system level. The spars

and ribs are modeled as aluminum panels with a single thick-

ness design variable per panel. All three spars between the

same two ribs share the same thickness design variable. Sim-

ilarly, a single design variable is used to design the thickness

of each rib. There is thus a maximum of eight design variables

for designing the spar thickness and eight design variables for

designing the rib thickness.

The top and bottom wing cover panels are designed on

a per panel basis, where each panel is constrained by two

spars and two ribs. There is a maximum of 16 panels for the

top wing cover of the wing-box and 16 panels for the bot-

tom wing cover of the wing-box. A typical wing cover panel

with positive force directions, orientation and dimensions is

shown in Fig. 2. In the model each cover panel is represented

by a single quadrilateral element if the internal spar and all

seven internal ribs are present. If the number of internal spars

and/or ribs is reduced some cover panels are represented by

more than one quadrilateral element.

The number of design variables used to design each panel

depends on the selected construction. For the sandwich con-

struction there are two design variables for each panel as shown

in Fig. 3. The design variables are the thickness of the wing

cover t and the thickness of the core tc. There is thus a maxi-

mum of 80 structural sub-optimization design variables when

Fig. 2 Typical wing cover panel

Fig. 3 Sandwich construction

considering the sandwich construction, which corresponds to

16 spar and rib thickness design variables and 64 top and bot-

tom wing cover design variables. The core density is assumed

to be 1.736 10−3 lb/in3.

For the hat-stiffened construction there are six design vari-

ables for each panel as illustrated in Fig. 4. The design vari-

ables are the number of hat stiffeners per panel n, the thick-

ness of the wing cover t1, the thickness of the stiffener t2, and

the dimensions of the stiffener d2, d3, and d4. The number of

stiffeners per panel is currently assumed to be a continuous

variable that can be rounded to the next highest number in

the final design. There is thus a maximum of 208 structural

sub-optimization design variables when considering the hat-

stiffened construction, which corresponds to the 16 spar and

rib thickness design variables and 192 top and bottom wing

cover design variables.
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Fig. 4 Hat-stiffened construction

The structural sub-optimization problem is subject to both

stress and local buckling constraints. Each element is subject

to maximum Von Mises stress constraints at both the upper

and lower surfaces. The local buckling constraints are applied

to each upper and lower wing cover panel. For the sandwich

construction (see Fig. 3) the local buckling equations are sum-

marized in equations (10) through (12)

σ1

σcr
− 1 ≤ 0 (10)

τ12

τcr
− 1 ≤ 0 (11)

σ1

σcr
+

(

τ12

τcr

)2

− 1 ≤ 0 (12)

where:

σ1 =
N1

2t
σcr = k

3.60 E

(b/teq)
2

τ12 =
N12

2t
τcr = k

4.85 E

(b/teq)
2

(13)

teq =
(

6t (tc + t)2 + 2t3
)1/3

In (13), k is an additional safety factor that guards against

delamination of the core from the face sheets. A safety factor

of k = 4.0 is used throughout the present work.

For the hat-stiffened construction (see Fig. 4) the local

buckling equations are summarized in equations (14) through

(19)

N1d1

Pcr
− 1 ≤ 0 (14)

1.0
0.95

0.85
0.8

0.7
0.6

0.5

0.15 0.05

Fig. 5 Normalized span-wise pressure distribution

σ1

σcr2

− 1 ≤ 0 (15)

σ1

σcr3

− 1 ≤ 0 (16)

σ1

σcr4

− 1 ≤ 0 (17)

τ12

τcr2

− 1 ≤ 0 (18)

σ1

σcr2

+

(

τ12

τcr2

)2

− 1 ≤ 0 (19)

where:

Pcr =
π2EIZZ

a2
w = d1 − d3 − d4

σ1 =
N1

teq
σcr2 =

3.60 E

(w/t1)
2

σcr3 =
3.60 E

(d2/t2)
2

σcr4 =
3.60 E

(d3/t2)
2

(20)

τ12 =
N12

t1
τcr2 =

4.85 E

(w/t1)
2

teq = t1 + nt2

(

2d2 + d3 + 2d4

b

)

The aerodynamic loads are applied as nodal forces to the

bottom surface nodes only, including the non-structural lead-

ing and trailing edge nodes. The normalized span-wise and

chord-wise assumed pressure distributions are shown in Figs. 5

and 6.

The aerodynamic pressure distributions are converted to

concentrated nodal forces, accounting for the areas associated

with each node, using (21)

Fi,j = Cf LPj CPi Si,j (21)
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0.4

1.0 1.0

0.5

0.25

Fig. 6 Normalized chord-wise pressure distribution

Fig. 7 Wing structural design regions

where i is the line number of the node and j is the chord

number of the node according to Fig. 7. Additionally, Cf is

the wing load, which is 143 lb/sf for the current wing, LPj

is the span-wise pressure distribution value based on the line

number from Fig. 6 and CPi is the chord-wise pressure distri-

bution based on the chord number from Fig. 5. The area asso-

ciate with each node is represented by Si,j . The actual nodal

forces are obtained by multiplying the forces from (21) with

a factor equal to the G value of the maneuver. For the 3.75 G

maneuver this factor is 3.75 and for the -1.5 G maneuver, the

factor is -1.5.

An important note regarding (21) should be made here.

The aerodynamic nodal forces are influenced by the deforma-

tion of the wing. In the present work this interaction is not

accounted for. Instead it is assumed that the wing will be built

to a jig-shape that off-sets the deformation due to the aerody-

namic loads.

4.3

Aerodynamic Analysis

The aerodynamic analysis is used to obtain the total drag re-

quired to calculate the range at the system level, using (9). A

simplified drag calculation is used with the total drag (D) for

the current wing calculated based on the total drag of the ref-

erence wing (Dref ). The calculation consists of the induced

drag (DI ), the wave drag (Dw) and a constant fraction of the

original drag, as shown in (22)

D = DI + Dw + CdtDref (22)

where Cdt is a constant and is assumed to be 0.4 in the present

work. The total drag of the reference wing is Dref = 40000 lb.

The induced drag depends on the aspect ratio of the cur-

rent wing (A) relative to the aspect ratio of the reference wing

(Aref ), as follows:

DI = CdiDref
Aref

A
(23)

Cdi is a constant and is assumed equal to 0.4 in the present

work. The wave drag depends on the frontal area of the wing

as projected on the streamline direction. The frontal area de-

pends on the span and the mean height of the wing as follows

Sh = b
(hr + ht)

2
(24)

where Sh is the frontal area, b is the span and hr and ht are

the height at the root and the tip of the wing respectively. The
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wave drag is then obtained relative to the reference wing using

(25)

Dw = CdwDref
Sh

Shref
(25)

where Cdw is a constant assumed equal to 0.2 in the present

work, Sh is the frontal area of the current wing and Shref is

the frontal area of the reference wing.

4.4

Geometric Issues

The system level design variables include the aspect ratio and

depth-to-chord ratio for a wing with constant area and sweep.

These two design variables determine the nodal coordinates

of the structural model through basic geometrical relation-

ships. The Y-coordinate (see Fig. 1) is obtained from (26)

Yi,j = Yi,j ref

(

b

bref

)

(26)

where i and j represents the line and chord numbers respec-

tively as before (see Fig. 7), Yi,j represents the Y-coordinate

for nodes in the current model and Yi,j ref represents the cor-

responding Y-coordinate in the reference model. The new X-

coordinate, depends on the sweep p and is obtained from (27)

Xi,j = (Xi,j ref − p Yi,j ref )

(

cr

crref

)

+ p Yi,j (27)

where cr is the root chord length of the current wing and crref

is the root chord length of the reference wing. Finally, the Z-

coordinate is obtained from (28)

Zi,j = Zi,j ref

(

cr

crref

)

(

h/c

(h/c)ref

)

(28)

Table 2 PSO parameters

Parameter Value

Number of particles 100

Initial inertia weight, w 1.4

Trust parameter 1, c1 1.50

Trust parameter 2, c2 2.50

where h/c is the depth-to-chord ratio of the current wing and

(h/c)ref is the depth-to-chord ratio of the reference wing.

5

Results

The PSO algorithm was used to solve the system level opti-

mization. This is an unconstrained problem that aims to max-

imize the range of the wing by changing the aspect ratio, the

depth-to-chord ratio, the number of internal spars, the num-

ber of internal ribs and the wing cover construction. The PSO

parameters used to solve the problem are summarized in Ta-

ble 2. These parameters were selected from previous work by

the authors (Venter and Sobieszczanski-Sobieski 2002) and

no attempt was made to fine tune the algorithm to the current

example problem. The main emphasis of the present work

was not to fine tune the PSO algorithm to a specific example

problem, but rather to investigate the utility of using the PSO

algorithm in a multidisciplinary optimization environment.

Due to the stochastic nature of the algorithm, the opti-

mization was repeated ten times, each using a different ran-

dom seed resulting in a different initial population. For each

repetition the best, worst, mean and standard deviation of both
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Table 3 Cost and objective function (range) statistics

Cost Range

(# Fn. Eval.) (n. mi.)

Mean 9660 5328.5

StdDev 1826 19.0

Best 6700 5343.6

Worst 13300 5276.3

the best objective and the number of function evaluations to

convergence were recorded.

The statistical results for the ten repetitions are summa-

rized in Table 3. From Table 3 it is clear that the results are

well converged between the ten independent repetitions with

a standard deviation of only 19 n. mi. for the mean range of

5328.5 n. mi. However, this robustness comes at a fairly high

average cost of 9660 analyses per optimization for the five de-

sign variable system level optimization problem. Part of this

high cost is due to the characteristics of the algorithm itself,

but part of it is related to the PSO parameters used. In partic-

ular it seems that the convergence criterion used is too strict.

For convergence, the objective function had to change less

than 0.1% in 5 consecutive iterations.

The best design point found from the ten repetitions is

summarized in Table 4. The optimizer increased the range by

increasing the aspect ratio of the reference wing by 34.7%,

while decreasing the h/c ratio by 10.8%. Additionally, the

internal spar is removed and the number of internal ribs is re-

duced from 7 to 4, while the hat-stiffened construction is pre-

ferred. These changes result in a longer, thinner wing with a

Table 4 Optimum design point

Parameter Optimum Reference

Range (n. mi.) 5343.6 5000.0

Aspect ratio 9.2360 6.8571

h/c ratio 0.1071 0.1200

Internal spars 0 1

Internal ribs 4 7

Construction Hat-Stiffened –

6.9% increase in range to 5343.6 n. mi. Note that the structural

sub-optimization problem is also performed for the reference

wing, so that the reference wing represents the optimum wing

for the reference aspect ratio and depth-to-chord ratio.

The spar and rib configuration for the optimum wing is

shown in Fig. 8. As mentioned previously, the internal ribs

are added from the root to the tip of the wing, while pre-

serving the original rib spacing. The ribs are absent along the

long outer wing segment because the optimization procedure

finds that they are not needed for anti-buckling support. Of

course, in a realistic wing-box, such a long segment without

ribs might not be acceptable because the ribs are also needed

to support the wing cover panels, acting as plates loaded by

the aerodynamic pressure. However, this effect was not mod-

eled and therefore could not affect the course of the optimiza-

tion.

The PSO algorithm successfully dealt with the discrete

design variables. All ten optimization runs resulted in the same

values for all the discrete design variables with only small

changes in the aspect and depth-to-chord ratios. The PSO al-

gorithm also successfully dealt with any spurious local min-
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Fig. 8 Spar and rib configuration for optimum wing-box
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Fig. 9 Range vs. aspect ratio

ima that may exist as a result of numerical noise. To illus-

trate the numerical noise present in the current example prob-

lem, it was decided to change the aspect ratio from 5.0 to

10.0 with increments of 0.125 while fixing all the remaining

system level design variables at their optimum values from

Table 4. Each range calculation consisted of a structural sub-

optimization which may introduce numerical noise. The range

of the aspect ratio was selected to include both the refer-

ence and optimum designs. The results of the numerical noise

study are shown graphically in Fig. 9.

From Fig. 9 it is clear that the aspect ratio has a significant

impact on the range and that the reference design represents a

good design, hence the fairly small improvement found by the

PSO algorithm. However, Fig. 9 also illustrates the severe nu-

merical noise associated with this design problem. The data

include three data points (A = 6.0, A = 6.125 and A =

6.5) for which the structural sub-optimization could not find

a feasible solution. The remaining numerical noise is a result

of incomplete convergence in the sub-optimization. Although

one could reduce the numerical noise in the present example

by forcing more strict convergence in the sub-optimization

problem (GENESIS was run with all default values), a bi-

level multidisciplinary optimization problem will in general

be subject to numerical noise. In the present example the nu-

merical noise is so severe that a gradient-based optimizer would

have a difficult time finding the true optimum design point

without being trapped in a spurious local minimum. However,

the PSO algorithm was able to overcome this numerical noise

and reliably find the same optimum design point starting with

ten different initial swarms.

6

Computational Cost

Computational cost is always a concern when using a non-

gradient based optimization algorithm. As shown in the present

work, this class of algorithms provide the designer with many

desirable features, but require many more function evalua-

tions as compared to traditional gradient-based optimization

algorithms.

A useful measure of the computational cost is to compare

the cost of using the PSO algorithm against that of a gradient-

based algorithm. For the present example problem, a single
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PSO run required an average of 9660 analyses to converge

(see Table 3). To estimate the computational cost associated

with a gradient-based algorithm, one needs to explicitly deal

with the discrete design variables present in the current exam-

ple problem, since no meaningful gradient information exist

for these variables. There are three discrete design variables

at the system level (the number of internal spars, the num-

ber of internal ribs and the wing cover construction type) that

result in a total of 49 possible combinations. When using a

gradient-based algorithm, it is possible to do a separate op-

timization for each of these combinations. The result is 49

independent optimization runs, each with two system level

design variables that are continuous (the aspect ratio and the

depth-to-chord ratio of the wing). For each sub-optimization

problem, consisting of two continuous system level design

variables, the number of required function analyses can be

estimated by assuming 3 analyses for each one-dimensional

search, 2 analyses for the finite difference gradient calcula-

tions and roughly 5 design iterations for convergence. This

process would provide a rough estimate of 25 analyses to

solve a single sub-optimization problem and a total cost of

1225 analyses to complete a single optimization run.

If one compares the estimated cost of a gradient-based

optimization algorithm to the average cost of the PSO algo-

rithm, it would seem that a gradient-based algorithm is better

suited for solving the example problem presented here. How-

ever, it is not a fair comparison to consider only the number of

function evaluations. First, the PSO algorithm was not tuned

to the specific example problem and thus provides an up-

per bound on the PSO computational cost. Second, and more

importantly, is the presence of severe numerical noise (see

Fig. 9). The PSO algorithm was demonstrated to effectively

and robustly deal with the presence of this numerical noise.

In contrast, a gradient-based algorithm would not be able to

deal with the numerical noise present in the current example

problem and could easily be trapped in spurious local minima,

resulting in false convergence. Third, the implementation of

the proposed gradient-based optimization scheme consisting

of 49 sub-optimization problems would place an additional

burden on the designer. Finally, as the number of discrete

combinations increase, either by adding discrete design vari-

ables or by having a larger set of discrete values for each de-

sign variable, it would quickly become infeasible to follow the

“all-combinations gradient-based approach” outlined here. In

contrast, the PSO algorithm only searches a small subset of

all the possible discrete combinations, making the algorithm

more attractive for larger numbers of discrete combinations.

Most non-gradient based algorithms parallelize well, re-

sulting in a dramatic reduction of the overall time required to

complete an optimization run. When considering the compu-

tational cost of these algorithms, it is thus important to also

look at the ability of using large numbers of concurrent pro-

cessors. For the present example, where a swarm size of 100

particles was used, the PSO algorithm requires an average

of 96.6 design iterations to converge. If 100 processors are

available, the average time to complete a single PSO opti-

mization would be equivalent to the real time of 96.6 anal-

yses. Of course, the proposed scheme for solving this prob-
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lem using a gradient-based algorithm can also be parallelized

by running each of the 49 optimization runs on a separate

processor. In this case a single optimization, consisting of 49

sub-optimization runs, would complete in the real time of 25

analyses.

7

Conclusions

The results presented clearly illustrates the usefulness of the

PSO algorithm in a bi-level multidisciplinary optimization

environment. The PSO algorithm is able to reliably find the

same optimum design point, despite the presence of discrete

variables and severe numerical noise. Although using the PSO

algorithm is more expensive than a gradient-based implemen-

tation, the advantages of directly dealing with the discrete de-

sign variables and the severe numerical noise present in the

current example problem, makes the PSO algorithm an at-

tractive alternative. For problems with a larger number of dis-

crete combinations, the PSO algorithm should be a more ap-

propriate choice than a gradient-based implementation simi-

lar to that proposed in Section 6. Additionally, exploiting a

large number of concurrent processors could dramatically re-

duce the overall computational time required to complete the

PSO optimization. A future investigation into the PSO param-

eters, specifically those related to the convergence criterion,

and their influence on the efficiency of the algorithm would

be appropriate.
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