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Imparting Desired Attributes in Structural Design by Means of

Multiobjective Optimization ?

Jaroslaw Sobieszczanski-Sobieski and Gerhard Venter

Abstract Commonly available optimization methods typically

produce a single optimal design as a constrained minimum of

a particular objective function. However, in engineering de-

sign practice it is quite often important to explore as much of

the design space as possible, with respect to many attributes,

to discover what behaviors are possible and not possible within

the initially adopted design concept. This paper shows that

the very simple method of the sum of weighted objectives

is useful for such exploration. By geometrical argument it is

demonstrated that if every weighting coefficient is allowed to

change its magnitude and its sign then the method returns a

set of designs that are all feasible, diverse in their attributes,
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and include the Pareto and non-Pareto solutions, at least for

convex cases. Numerical examples in the paper include the

case of an aircraft wing structural box with thousands of de-

grees of freedom and constraints, and over 100 design vari-

ables, whose attributes are structural mass, volume, displace-

ment, and frequency. The weighted coefficients method is in-

herently suitable for parallel, coarse-grained implementation

that enables exploration of the design space in the elapsed

time of a single structural optimization.

1

Introduction

Most structural aerospace optimization applications have min-

imum weight as the objective. However, the complete descrip-

tion of a structure entails many other attributes that the de-

signer may wish to influence, especially in a multi-disciplinary

environment in which these attributes are the quantities that

couple the structure to other disciplines and subsystems.

The purpose of the paper is to show that a designer may

use multiobjective optimization as a tool to impart a choice

of behavior attributes in the design at hand. The use scenario
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for the method proposed herein is to generate a choice of fea-

sible designs whose attributes fall within a range of interest,

discover limitations on that range, and then let the designer

choose, according to judgment and subjective interest as the

final qualifiers of the design suitability. In this context, the op-

timization is regarded simply as a given tool and its advance-

ment per se is not in this paper focus. A body of literature

exists on multi-objective optimization. However, its focus is

on the performance and theoretical aspects of the methodol-

ogy (e.g., Stadler (1988)) rather than on issues of a direct

interest to the structural designer. The practitioner toolbox for

multi-objective optimization contains several techniques that

differ in terms of computational efficiency, effectiveness, and

ease of use. The following are typical examples of these tech-

niques:

1. Weighted sum objective functionF =
∑
i

wi fi wherewi

is a weighting factor assigned to the objective component

fi, e.g., Geoffrion (1968)

2. Discrepancy objective functionF =
∑
i

(
fi − fT

i

)2
where

fT
i is a target set for the objective componentfi

3. Goal Programming (a.k.a. Compromise Programming) in

which the objective function may be formulated asF =

∑
i

∣∣fi − fT
i

∣∣

4. Global optimization in which the objective function is the

same as in item 2 but the targets are derived by optimiz-

ing each objective separately, one at a time, i.e.,fT
i =

min (fi; X : g(X) ≤ 0), wherefi is theith attribute. In

a variant of this technique, one of the objectives is op-

timized with the ensuing changes of the other objectives

controlled by gradually adjusted constraints.

5. Normal constraint method (e.g., Messac, Ismail-Yahaya

and Mattson (2003); Messac and Mattson (2004))

Among these techniques, the weighted sum objective func-

tion technique is by far the simplest to use. It is also a natu-

ral choice for coarse-grained parallel computing with existing

analysis and optimization programs - an important advantage

in view of the multiprocessor computers becoming commonly

available. On the other hand, the method is not the mathemati-

cian’s favorite because of its shortcomings examined in, for

example, Messac, Ismail-Yahaya and Mattson (2003); Mes-

sac and Mattson (2004); Messac and Ismail-Yahaya (2001);

Das and Dennis (1997); Koski (1988); Belegundu and Chan-

drupatla (1999). The shortcomings pointed out most often are

the method missing some of the Pareto-points and its inability

to return points uniformly distributed over the Pareto-frontier

(remedies were proposed, e.g., Messac, Ismail-Yahaya and

Mattson (2003); Messac and Mattson (2004)).

However, this paper demonstrates that despite these short-

comings the weighted sum objective function method is of

practical utility. The evidence presented herein includes ex-

ploration of the design space simultaneously for many design

attributes, including Pareto- and non-Pareto points alike, and

an example of dimensionality large enough to be relevant to

real-world applications.
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2

Weighted sum objective Function Properties

It is useful to begin with preliminaries that usually appear in

literature in a mathematical form but, for a difference, will be

presented here with emphasis on descriptive geometry. Con-

sider a convex design space (X1, X2) whose boundary is formed

by constraintsc1 = 0 andc2 = 0 as depicted in Fig. 1. Two

linearly independent objective functions,f1 andf2, exist and

are assumed, temporarily, to be linear. Then, their contours

may be represented by two sets of straight lines as depicted

in Fig. 1, and the arrows,G1 andG2, portray the gradient

vectors of these functions. Because the number of objective

functionsM is the same as the number of design variables

N , M = N = 2, this is a special case easy to illustrate. The

implications ofM 6= N will be discussed later. Monotonicity

of linear functions determines that the constrained extrema of

f1 andf2 lie at the pointsA, B, D, E, where the contour lines

are tangent to the constraint boundary curves, consistent with

the nature of most engineering problems in which minima are,

typically, constraint-bound as opposed to free minima located

inside of the feasible space.

A weighted sum objective

F = w1f1 + w2f2 (1)

has contours shown in Fig. 1 by the third set of straight lines,

its gradient vector

GF = w1G1 + w2G2 (2)

and its extrema lie at the tangency pointsP andQ.

Fig. 1 Weighted sum objective Function

GF

w2 G2

w1 G1

a(w1, w2)

c

b

Fig. 2 Gradient Vector

Turning to Fig. 2, the vectorsw1G1 andw2G2 may be

regarded as skew coordinates (the objective functions must

be linearly independent to avoid the degenerate case of co-

linear coordinate axes). Then, it is apparent that by choosing

the signs and values ofw1 andw2, one may orientGF at any

anglea in a full 0◦ to 360◦ range. One may note that a similar

effect would be achieved by using always-positivewi com-

bined with the sign offi treated as a variable taking on a plus

or minus value (the minus sign corresponding to a maximiza-

tion). However, the latter would introduce an inconvenience

of a discrete variable into the formulation.
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Fig. 3 f1 versusf2

One full rotation ofGF through 0◦ to 360◦ results in the

extremum pointsP andQ tracing the entire closed circuit of

the constraint boundary consisting of the contoursc1 = 0 and

c2 = 0. Each location ofP in that travel corresponds to a pair

of values off1 andf2, and the same is true forQ. These val-

ues are bounded by the minimum and maximum off1 andf2

marked byA, B, D, E. Hence, a plot off1 vs.f2 may be con-

structed, corresponding to the full circuit travel ofP andQ, as

seen in Fig. 3, in which the Pareto-minimum arc extends from

points 1 to 2, and the Pareto-maximum arc stretches from 3

to 4. The corresponding Pareto arcs in Fig. 1 areA–D and

B–E. If one broadens the idea of the Pareto-optimization to

encompass mixed cases in which some of the objectives are

minimized and some are maximized, then arcs 1–4 and 2–3

may also be regarded as Pareto frontiers. In particular, on arc

1–4,f1 is being minimized andf2 is being maximized, while

the opposite is true on arc 2–3.

The above vector geometry clearly shows that the normal-

ization of the vector ofw to
∑
i

wi = 1 that often appears in

the weighted sum formulation used in Pareto-optimization,

for example Eschenauer (1988) and Koski (1988), restricts

the attainable orientations ofGF to b ≤ a ≤ c (see Fig. 2).

This orientation restriction is immediately seen in a two-objectives

case, in which normalizedF = wf1 + (1 − w)f2. Such an

F formulation results inw1G1 whose sign in Fig. 2 may be

positive or negative to be replaced with a positive onlyG1 so

that anyGF orientation beloww2G2 is unattainable. Return-

ing to Figs. 1 and 2, it is self-evident that optimization with

the above normalized formulation is still adequate to identify

the conventional Pareto-frontiers where all objectives are ei-

ther minimized or maximized, e.g.,A–D andB–E in Fig. 1,

but cannot discover the frontier arcs where minimizations and

maximizations are mixed.

Removal of the linearity assumption forf1 andf2 leaves

the above argument qualitatively unchanged, even though the

straight contours off1 and f2 become curved. However, it

introduces a possibility of the minimum ofF leavingP and

moving toM that falls in the feasible space as illustrated in

Fig. 4 that showsf1, f2, andF plotted along direction marked

s in Fig. 1. Generalization of the reasoning based on the ge-

ometry presented in Figs.1–3 to higher dimensions in terms

of the number of objectives and design variables is discussed

later.

One should note another consequence of the non-linearity

of fi. The degree of non-linearity inf1 (or f2) may be suffi-

cient to make the contours offi, curve inside of theci = 0

boundary, as shown in Fig. 5 for an example off1 andc2. In

that situation, by inspection, the minimum offi is located at

the vertex (South-East vertex in Fig. 5). As to the minimum

of F , two possibilities exist. Either the combination of thewi
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Fig. 4 Non-linearf1 andf2
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Fig. 5 Curvature off1 displacing the function minimum to the ver-

tex

magnitude with the curvature offi is insufficient to curve the

contours ofF inside of theci = 0 boundary, in which case

the previous conclusion about location ofP remain qualita-

tively valid, or it is sufficient to make theF contours curve

inside of theci = 0 boundary. In the latter case, the minimum

of F must fall on the vertex just as the minimum off1 does

in Fig. 5.

2.1

Limitations of the Method

When applied to a convex problem in whichM = N depicted

in Fig. 1, the method identified all the points on the feasible

space boundary. However, this may not be true if the problem

is non-convex or its dimensionsM 6= N .

Considering convexity first, no general statements can be

made for arbitrarily non-convex cases, some of which may

be found examined in Messac, Ismail-Yahaya and Mattson

(2003), and Koski (1988) with examples showing that the

Pareto-frontier may become disjoint. A “dimple” in the feasi-

ble domain boundary depicted in Fig. 1 - inset provides an

example. In this case, the same geometrical construct pre-

sented in discussion of Fig. 1 would identify additional local

minimum of f2 at D′, and the points on arcZ2–Z3 but not

on arcsZ1–Z2 andZ3–Z4. Thus, the method may miss some

potentially useful design points, if the problem is non-convex.

For a remedy, one may resort to the techniques such as those

presented in Messac (1996), Messac, et al. (2000), Zeleny

(1973), and Chen, Wiecek and Zhang (1998).

Generalization to a case ofN > M , typical for practical

applications, begins with an observation that theGi gradient

vectors of the weighted sum objective component functions

define in theN -dimensional design space aM -dimensional

subspace in which the weighted sum objective gradient vector

GF being the resultant of theGi vectors must lie. Since the

1st order Kuhn-Tucker conditions for a constrained minimum

of a weighted sum function are based onGF , it follows that

such a minimum for any combination of the weighting factors
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wi must fall on the intersection of theM -dimensional sub-

space defined byGi with the boundary of theN -dimensional

feasible domain. In a special case ofM = N , as in Fig. 1,

the above intersection entails the entire boundary of the fea-

sible domain. The latter is also true for the case ofM > N

(seldom, if ever occurring in practice), however, the number

of X design vectors that can be independently prescribed in

aN -dimensional design space cannot exceedN .

2.2

Summary of the Method

Based on the geometrical argument illustrated in Figs. 1–3

and the foregoing discussion of limitations, one may assert

that optimization defined as

Given fi, wherei = 1, ..., Nf

wi, wherei = 1, ..., Nf

gj , wherej = 1, ..., Nc

Bounds onX

Find X

Minimize F =
P
i

wi fi

Satisfy gj ≤ 0

Bounds onX

when repeated forwi taken in a sufficiently wide interval, re-

turns design points located either on the intersection of the

feasible domain boundary with the subspace defined by the

gradients of the objective functions (or inside of the feasible

domain if free minima exist). The envelope of attainable min-

P = 5000 N

L = 200 cm

h

b

t
2

t
1

t
i
- wall thickness

t
3

A-A

A

A

t
3

Fig. 6 Cantilever Beam Example

imum and maximum values for eachfi may be determined

by settingwi = 1 with wj = 0 for all j 6= i.

The remainder of the paper presents numerical examples

of using the above outlined optimization technique as a tool

to explore multi-attribute design spaces.

3

Numerical Examples

3.1

Small scale, introductory example

The concept of controlling the object attributes by multi-objective

optimization may be illustrated by the following example.

This utterly simple and yet instructive example is a cantilever

box-beam, depicted in Fig. 6, of lengthL with a rectangular,

b-by-h, thin-walled cross-section, loaded by a forceP at the

tip.

The multi-objective optimization problem is defined as

where:W - structural weight (tantamount to the material vol-

ume); S - bending stiffness with respect to the tip loadP ;

T - the lowest torsion mode frequency;B - the lowest bend-
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Given E - Young’s modulus

L - Beam Length

σa - Allowable stress

Find X = b, h, t1, t2, t3

Minimize F = w1
W
W0

+ w2
S
S0

+ w3
T
T0

+ w4
B
B0

Satisfy gj ≤ 0

ing mode frequency;gj - constraints on normal stress, and

on buckling of the top panel. The bending and torsional stiff-

nesses involved in the frequency calculations are expressed,

respectively, by the strength of materials beam formulas and

by the thin-walled box beam formulas due to Bredt. The nu-

merical disparity of the terms in the above formulation was

removed by the use of normalization by the initial values in-

dicated by subscript 0.

The solution obtained numerically (using the Microsoft

Excel solver) for various values ofwi generates a family of

the box-beam designs entailing a broad variety of cross-sectional

dimensions, as illustrated by a few examples in Fig. 7 for

variousw1 and w2. The wi settings appear beneath cross-

sections that are drawn to scale in regard to theb andh dimen-

sions. The wall thicknesses and the attributes are inscribed

and so are the attributes. The result sample continues in Ta-

ble 1 and shows how some of the attributes change when

w1 = constant, w3 = w4 = 0, andw2 varies. These re-

sults were selected from about 40 different Excel Solver exe-

cutions.

Cross-sections b, h to scale 1cm = 4 cm,

thicknesses, and W, d, B, T inscribed.

w1 w2 w3 w4

1.  0.   0.   0.

reference

w1 w2 w3 w4

1.   8.   0.  0.

0.1

0.1

0.09

0.06

0.06

0.13

W=21.3

d = 0.22

B=746

T=1285

W=9.43 kg

d = 1.97 cm

B=327 Hz

T=1977 Hz

0.01

0.1

W=10.47

d = 0.132

B=379

T=227

10 cm

0.01

drawn to scale

w1 w2 w3 w4

1.   0.   0.  0.19

Fig. 7 Cantilever Beam Results

Table 1 Cantilevered Beam Results

w2 W/W0 S/S0 B/B0 T/T0

-1.0 4.4053 6.1347 0.1924 0.2934

-0.5 1.3265 1.9824 0.6167 1.0300

0.0 1.0000 1.0000 1.0000 1.0000

0.5 1.0496 0.7685 1.1135 0.6567

1.0 1.2471 0.4987 1.2680 0.6180

2.0 1.5202 0.3040 1.4711 0.6347

4.0 1.8531 0.1853 1.7067 0.6511

8.0 2.2590 0.1129 1.9800 0.6491

max/min 4.41 55.73 10.42 3.55

The last row of Table 1 shows the ratios of the maxi-

mum/minimum entries in each column. These ratios indicate

that the attributes vary in quite a broad range as a function of

w2, for instance the ratiomax(S/S0)/ min(S/S0) = 55.73,

while the ratiomax(W/W0)/ min(W/W0) = 4.41.

Taking the above example as an indication that the weighted

sum objective function approach may have a potential to be
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Fig. 8 Transport Aircraft Wing

effective as a means by which to control the design attributes,

attention turns now to a larger test case of a transport aircraft

wing.

3.2

Larger scale example

Figure 8 displays the finite element model representing the

structural box of the wing, and Table 2 provides a description

of the FEM. The problem dimensionality in terms of the num-

bers of the elastic degrees of freedom, constraints, and de-

sign variables probably qualifies it as one of the largest cases

treated with multi-objective optimization.

The wing cover, rib and spar webs were modeled as a

sheet construction. The model included spar caps, while the

rib caps were not modeled. The constraints included equiv-

alent Von Mises stress constraints and tip displacement con-

straints. The design variables were divided so that 100 of the

design variables controlled 2600 quad thickness values, 25

of the design variables controlled 600 rod diameter values

and a single design variable controlled the volume change

Table 2 Description of the wing test case and its FEM

Parameter Value

Planform Trapezoid

Span 70ft

Chord(Root) 12ft

Chord(Tip) 3ft

Depth/Chord 0.2

Sweep Angle 30◦ aft

Material Al-alloy

Num. Elements 3008

Num. Nodes 1917

DOF 11400

Design Variables 126

Constraints 24048

of the wing. The wing volume was changed to preserve the

wing span and the depth/chord ratio. Two load conditions

were considered: normal lift and engine weight; and landing,

half lift and engine weight. The lift was modeled as an equally

distributed load over the bottom surface of the wing, engine

weight was modeled using point loads and the landing con-

dition was modeled as a moment and lifting force distributed

over the trailing edge of the wing.

Structural optimization of the aircraft wing was performed

using the program GENESIS (2001) that integrates optimiza-

tion and finite element analysis. The program does not include

any tests, a priori or a posteriori, on the problem convexity.

Three optimization problems were considered: The first prob-

lem minimized a combination of the mass and first bending

mode frequency; and the second minimized a combination of
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the mass and the tip rotation of the wing. The third problem

dealt with three objectives of the mass, first bending mode

frequency and the wing internal volume. All design problems

had the same design variables, except for the third problem

which included the additional design variable that controls the

volume.

In all the numerical experiments the optimization was de-

fined as follows, and thefi functions were always normalized

to eliminate the effect of the magnitude disparity.

Find Design variables from Table 2

Minimize F =
P
i

wi fi, wherei = 1, ..., Nf

Satisfy Behavior constraints from Table 2

For the first case, where a combination of the wing mass

and first bending mode frequency was considered, the objec-

tive function in the wing tests illustrated in Fig. 9

F = w1
Mass

Mass0
+ w2

Freq

Freq0
(3)

where:Mass - wing mass;Freq - first bending mode fre-

quency;Mass0 - mass of the initial design; andFreq0 -

first bending mode frequency of the initial design. Bothw1

andw2 were retained without normalization byw1 to allow

a trade-off study between the mass and frequency (the wing

mass was driven up whenw1 < 0). Figure 9(a) shows how

F varies over a grid ofw1 andw2, each allowed variability

over a fairly broad interval of±5 with an increment of 0.5.

Of course,w1 = w2 = 0 is a degenerate case that produced

no results; the other special case is the diagonalw1 = w2).

The variance ofF is relatively small compared to the vari-

ance of the mass and frequency plots (see Figs. 9(b) and 9(c)

respectively). The normalized mass and frequency values are

shown in Figs. 9(b) and 9(c), using the same grid as shown

in Fig. 9(a). These figures show that by manipulatingw1 and

w2 one may create a family of wing designs, bounded by light

and high frequency and heavy and low frequency designs. The

bounds are quite wide so that the mass varies from 52% to

180% while the frequency changes from 60% to 258% rel-

ative to the reference design. The plots also show that there

are limits beyond which the attributes of mass and frequency

cannot be pushed, regardless of the magnitude ofw1 andw2.

The attributes appear to be slope-discontinuous functions of

w1 andw2. These discontinuities were generated, as it was to

be expected, by changes in the active constraint set.

Further testing included the attributes of mass and tip ro-

tation, using the following objective function

F = w1
Mass

Mass0
+ w2

Rot

Rot0
(4)

where:Rot - tip rotation; andRot0 - tip rotation of the initial

design. These tests generated results presented in Fig. 10. In

general the same trends are present in Fig. 10, as compared

to Fig. 9. The variance ofF is small compared to that of the

mass and tip rotation attributes. Also the variance inF is of

a smooth nature, while the mass and tip rotation attributes

show variance with a discontinuous behavior. As before, the

attributes vary broadly: 52% to 180% for the mass and 51%

to 206% for the tip rotation, relative to the reference design.

Again, there are limits beyond which the attributes of mass
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and frequency cannot be pushed, regardless of the magnitude

of w1 andw2.

Another feature of the individual attribute surfaces in Figs. 9

and 10 are their stepped structure corresponding to the changes

in the critical constraint set and certain amount of noise where,

apparently, the optimizer encountered numerical difficulties at

the peripheries of the intervals.

The next set of numerical experiments pertained to the

objective function extended to include the internal volume of

the wing box, an attribute of interest if the wing is used as a

fuel tank

F = w1
Mass

Mass0
+ w2

Freq

Freq0
+ w3

V ol

V ol0
(5)

where:V ol - internal volume of the wing; andV ol0 - inter-

nal volume of the initial design. The set of constraints was

augmented with the constant ratio of depth/chord.

The optimizations were carried out on a grid in the space

of (w1, w2, w3) in which eachwi varied from -5 to +5 with

a step size of 0.5. The result was a data base in 3 dimensions

(a 3D cloud of points). To visualize the data on 2D scatter

plots, a series of cuts were made through the data base and

displayed in figures: Fig. 11 - a series of frequency vs. mass

plots for 6 values of volume; Fig. 12 - a series of volume vs.

frequency plots for 6 values of mass; and Fig. 13 - a series

of 6 volume vs. mass plots for 6 values of frequency (all data

normalized).

The diagrams show variations of the attributes in quite

wide intervals, typically 5 units wide (i.e., 0.5 to 2.5). The

shape of the cloud of points may be visualized if one thinks

of the series of 6 graphs as snapshots taken while the third

attribute advances, e.g., in Fig. 11 the volume advances as in-

dicated by its values inscribed on top of each frame. The cloud

of points grows from the single point displayed in Fig. 11(a)

to its largest size reached in Fig. 11(f). It may be useful to

think of the cloud of points as a two-dimensional analog of

the projection of the contour in Fig. 3 on thef1 andf2 axis

betweenA andB, and betweenD andE.

The distribution of points is markedly non-uniform as typ-

ical for the weighted sum objective approach Messac, Ismail-

Yahaya and Mattson (2003); Messac and Mattson (2004);

Koski (1988) and its bandedness is a reflection of the fea-

sible space boundaries that have been previously shown in

Figs. 9 and 10 as consisting of curved surfaces and nearly

level plateaus. Wherever these plateaus are nearly perpendic-

ular to the attribute plane, their projection appears as a band of

points as in Figs. 11–13. The straight vertical lines that bound

the clouds of points in Figs. 12(b)–12(f) and 13(b)–13(f) re-

flect the boundaries of the attribute space.

Even though the boundary of the cloud of points is fuzzy

as a result of the non-uniform point distribution, the cloud

silhouette in Figs. 11–13 appears to the observer as defined

fairly clearly owing to the human sense of sight remarkable

capability to discern patterns. This adds to the utility of the

method especially when used with an aid of a computer mon-

itor in an interactive manner.

Contours of the wing cover sheet thickness plotted in Fig. 14

for six combinations of the attributes and thew-coefficients
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provide one example of the detail diversity of the designs ob-

tained.

The obvious alternative to the weighted sum function ap-

proach is to probe for the boundaries of the cloud by optimiz-

ing with target values prescribed for the objective. To provide

a comparison of this approach with the weighted sum func-

tion method, the following optimization was carried out

Find X

Minimize F =
ą
f1 − fT

1

ć2

Satisfy Behavior constraints from Table 2

ą
f2 − fT

2

ć
= 0

ą
f3 − fT

3

ć
= 0

wheref1 is the normalized volume,f2 is the normalized mass,

f3 is the normalized frequency, andfT
1 , fT

2 , fT
3 are the cor-

responding target values. The GENESIS objective function

history and constraint violation history plots are shown in

Fig. 15. It is evident that although the optimizer is able to

find a feasible solution very quickly, the convergence is very

slow (an arbitrary limit of 100 on the number of iterations was

set). In comparison, an equivalent weighted sum approach

required less than 10 design iterations for full convergence.

There is also a potential for a “no feasible solution” result

returned by the optimizer. This possibility must be noted as

a demerit of the alternative method because many optimiz-

ers return meaningless solutions when unable to converge to

a feasible point, so this approach would then have to be exe-

cuted in a trial-and-error fashion.

4

Conclusions

The study reported herein led to the following observations:

– Multi-objective optimization based on the simplest tech-

nique of the weighted sum objective function was shown

by a descriptive geometry argument to be able to return

the design points that are in the feasible space or, most

often, on its boundary when the weight coefficients are

varied in magnitude and in sign.

– The magnitudes of individual attributes associated with

these points change in a broad range within the domain of

the weighted sum function weight coefficients.

– In the w-domain, the individual attributes exhibit slope

discontinuities related to the changes in the active con-

straint set, as well as a certain amount of numerical noise.

– There are limits on individual attributes and their ratios.

– The wing example results show that the attributes of mass,

displacement, and vibration trade for each other in very

wide ranges. Exploitation of these trade-offs may be use-

ful in a vehicle design, especially if one needs to tune the

aeroelastic behavior, or control interaction of the structure

with other subsystems.

– Attempt to explore the range of attributes by the target

method showed that method as impractical because it may

be unable to find a feasible solution for targets beyond

reach. In contrast, by using the method presented herein

one may drive a design toward its particular attribute limit
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by increasing the corresponding weighting coefficient with-

out causing infeasibility.

– On the other hand, if these coefficient ranges are too small,

the feasible design will not be explored in full. That calls

for judgment in setting these ranges.

– Although parallel computing was not in the scope of this

study, it is self-evident that the method is amenable to

the use of existing analysis and optimization codes in the

manner of a coarse-grained parallelism. In that mode, the

time for exploration of the design space may be reduced to

the time of a single optimization should a sufficient num-

ber of processors be available.

– The limitations on the attributes and their ratios are de-

fined as fuzzy outlines of the clouds of points but the clar-

ity of that definition to the human observer appears to be

sufficient as an aid in making design decisions.

Overall, the multi-objective optimization based on the weighted

sum objective function technique was found to be a simple

and practical tool for exploring the design space for many

design attributes simultaneously once the design concept has

been decided. It has a potential for providing an insight into

the design space to determine what is possible in terms of the

design attributes. In convex problems, the method identifies

also the bounds on the attributes, and this information may

be particularly useful in guiding specification writing so as to

avoid unattainable requirements. It returns a collection of fea-

sible designs from which one can choose, so in this sense it

enables a control over the design in a range of alternatives as

opposed to a single point optimum design.
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(a) Norm Vol=1.69, Norm Mass=1.51, Norm Freq=3.16

w1 = −1, w2 = −4, w3 = 1

(b) Norm Vol=1.69, Norm Mass=2.00, Norm Freq=0.57

w1 = −1, w2 = 5, w3 = −1

(c) Norm Vol=0.89, Norm Mass=1.21, Norm Freq=2.34

w1 = −2, w2 = −3, w3 = 4

(d) Norm Vol=1.69, Norm Mass=0.51, Norm Freq=1.87

w1 = 4, w2 = 0, w3 = −4

(e) Norm Vol=1.69, Norm Mass=0.71, Norm Freq=0.71

w1 = 4, w2 = 3, w3 = −3

(f) Norm Vol=1.05, Norm Mass=1.44, Norm Freq=0.62

w1 = −5, w2 = 4, w3 = 5

Fig. 14 Top Cover Thickness Contours


