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The paper introduces a new approach to multi-fidelity optimization.  The approach
employs gradient-based optimization, where the one-dimensional search points are
evaluated using high-fidelity analysis, while the gradients are evaluated using low-fidelity
analysis.  Correlation between the results of the high- and low-fidelity analyses is not
required.  The approach is demonstrated using two example problems.  Computational
savings in terms of time and the number of high-fidelity analyses are discussed.

 I. Introduction
NE of the obstacles in practical implementation of optimization in industry is a potential high computational
cost.  An analysis of a complex system may take several hours and even days to complete and optimization

requires performing many of these analyses.  The number of design variables in optimization directly affects the
number of analyses: the more design variables in the problem, the more analyses should be performed.  This is
especially true for a gradient-based optimization, where the gradients are evaluated using finite-difference
calculations.  A partial answer to the computational cost problem is Response Surface optimization methods1-7,12,
which do not require gradient information for optimization, thus reducing the required number of analyses.  One
difficulty with the Response Surface optimization methods is that their range of application is typically limited by
about 20 design variables.

Another approach to reducing the computational cost is multi-fidelity optimization methods8-12.  These methods
combine high and low-fidelity analyses.  One example of employing multi-fidelity optimization is creating a
response surface from a relatively small number of high-fidelity analyses, then performing low-fidelity analyses for
the same points and creating a response surface for low-fidelity analyses.  Next, a correction factor is introduced that
helps converting low-fidelity analysis results into the high-fidelity analysis results.  The correction may be done for
the response surfaces or for the analysis results themselves.  Finally, when optimization is performed using the low-
fidelity analysis, the results of each low-fidelity analysis is updated using the obtained correction factor.  At some
intermediate stage of the optimization and at the optimum a high-fidelity analysis is performed to verify the results.
If the correlation is not satisfactory, the response surfaces for high and low-fidelity analyses are recreated and the
correction factor is reevaluated.  The process may be repeated several times.  And the correction factor itself may
constitute a response surface12.  One of the disadvantages of this approach is that the results of high and low-fidelity
analyses have to be correlated periodically during the course of optimization. For a relatively large number of design
variables and responses the correlation may become rather involved, particularly, if each response employs its own
correction factor, bringing up the limitation in the number of design variables and responses used.

The current paper proposes a modified approach to multi-fidelity optimization, where the one-dimensional
search points in gradient-based optimization are evaluated using high-fidelity analysis and the finite difference
gradient calculations are performed using low-fidelity analysis.  One of the advantages of the proposed approach is
that with the proper selection of high and low-fidelity analysis models there is no need to correlate the results of the
two during optimization.  Another advantage is that such an approach removes the potential limitation on the
number of design variables and responses employed in response surface based multi-fidelity optimization.

                                                                
* Senior R&D Engineer, Senior AIAA Member
† VisualDOC Project Manager, AIAA Member

O



American Institute of Aeronautics and Astronautics
2

 II. Description of the Proposed Approach
In spite of the many advances in various optimization methods, gradient-based based optimization still holds the

leadership in the number of design variables and constraints that the optimizer can handle.  We tried to make use of
existing gradient-based optimization methodology for optimizing models that require a lot of computational
resources to be analyzed.

The proposed approach is based on the fact that for a robust gradient-based optimizer the gradients used in
optimization potentially may be of relatively low quality, as long as the general direction of the gradient vector is
captured correctly.  The better the gradients, the easier it is for an optimizer to move around design space towards
the optimum, but even with relatively low quality gradients a robust optimizer may bring the optimization process
into a region of the actual optimum.  Based on this observation we propose to employ two models during
optimization: one of high fidelity and the other of low fidelity.  The high-fidelity model will be used for analysis of
the points in the one-dimensional search and the low-fidelity model will be used for calculating responses during the
finite difference steps.  The important aspect is that the design variables and responses present in the high-fidelity
model and intended for use in optimization process must also be present in the low-fidelity model.

The underlying assumption in the proposed approach is that the designer will create two similar models and the
low-fidelity model will approximately capture the behavior of the high-fidelity model.  It is left up to the designer to
decide how well the physics of both models should correspond to each other.  One may argue that the results of the
high-fidelity model analysis could be drastically different from the results of the low-fidelity model analysis and
therefore the correlation between results is required.  However, as long as the low-fidelity analysis captures the
general trend of changes in responses due to changes in design variables, the differences in absolute values of
responses may not be that important for a robust gradient-based optimizer.  The reason is that during the finite
difference gradient calculations the absolute values of the responses are not taken into account.  The things that
matter are the relative changes in the responses due to changes in the design variables.  As long as these relative
changes are approximately captured by a low-fidelity analysis, the finite difference gradient calculations should
produce valuable gradient information.

The finite difference calculations are performed using the low-fidelity analysis, therefore the number of design
variable and the number of responses involved in the optimization could be quite large.  Also, the number of design
variables and responses is not limited by the necessity to correlate the results obtained from high and low-fidelity
analyses.

An example of a high-fidelity model could be a non-linear finite element structural analysis model in LS-Dyna13

or ABAQUS14 that may take many hours to run, while the corresponding model for a linear structural analysis in
GENESIS15, NASTRAN16, or ABAQUS in the linear mode could take just minutes to run.  Thus, from the
computational cost standpoint the time spent on gradients calculations via linear structural analysis can be almost
negligible in this case.

To summarize the main features of the proposed approach, here are the lists of its advantages and disadvantages.
Advantages:
• Makes it realistic to perform optimization with many design variables and responses using computationally

expensive analysis by virtually eliminating the cost of the gradient calculations.
• Eliminates the need to correlate high and low-fidelity analysis results during optimization, when compared

to more traditional multi-fidelity optimization methods.
Disadvantages:
• The designer has to create two models of different fidelity with the same design variables and responses.

Here it is left up to the designer to be sure that the trends in the changes of the responses due to changes in
the design variables are similar between the two models.

• It may become the responsibility of the designer to calculate the finite difference gradients using the low-
fidelity analysis code, if there are no explicit gradient calculations present in the low-fidelity analysis code.

• The optimizer will most likely bring the design into the region of the optimum, rather than pinpointing the
exact location of the optimum.

The ABAQUS finite element analysis code provides a partial solution to the problem of correlating linear and
nonlinear models.  After the nonlinear model is constructed, it is possible to make ABAQUS perform a linear
analysis of the model by replacing just one keyword in the data deck.

An essential part of the proposed approach is a robust gradient-based optimization method, which in spite of the
inaccurate gradients will be able to drive the design into the region of the optimum.  A practical example of such an
optimization method is the Modified Method of Feasible Directions inside of DOT17 and VisualDOC18 by
Vanderplaats Research and Development, Inc.
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 III. Example Problems

A. Bending of a Curved Stepped Beam
As a first example problem for demonstrating the proposed approach we selected a problem of optimizing the

shape of a curved beam, which can be a part of a 10-ton crane hook, shown in the Fig. 1.

We optimized the lower left portion of the hook from Fig. 1 that included the points on the hook with the highest
stress.  We represented that portion of the hook as a curved beam divided into sections (Fig. 2).

To simulate the high-fidelity analysis, the maximum stress in the root of each section was calculated using the
formula for bending stress in a curved beam19, when the applied force, P , was resolved into a normal force, P1, and a
bending couple, M, for each section (the shear stresses were not considered):
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where h and b are the dimensions of the cross-section for each section.
To simulate the low-fidelity analysis we selected the model of a straight beam divided into the same number of

sections as the curved beam (Fig. 3).  The length of the straight beam was chosen to be equal to the radius of
curvature, R, of the middle layer of the curved beam.

Figure 1.  The 10-ton crane hook Figure 2.  The curved beam divided into sections.

Figure 3.  The straight beam divided into sections.
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For the low-fidelity analysis the maximum stress in the root of each section was calculated using the formula for
bending stress in a straight beam19 (the shear stresses were not considered):
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where again h and b are the dimensions of the cross-section for each section.
Although the two models (Figs. 2 and 3) were quite different, we felt that the model for the low-fidelity analysis

correctly captures the general trends for changes in stresses and volume of the beam due to changes in design
variables.  As mentioned before, the important part was to be sure that the same responses were present in both the
high- and low-fidelity models.

Table 1 presents the parameter values used for both models:

Table 1.  Parameter values for the curved beam optimization problem.

Parameter
Notation Description Value

P Applied concentrated force 20,000 lb
R Radius of the middle layer of the curved beam 4.5 in
h Initial height of each segment 4.0 in
b Initial width of each segment 2.0 in

The optimization goal was to minimize the volume, V, of the portion of the beam, subject to constraints on the
maximum stresses, Aσ , in each section: 000,20<Aσ  psi.  The cross-sections dimensions of each section, h and b,

were the design variables.  Section numbering started from the clamped end of each beam.  To prevent singularities
in calculating the stresses in each section additional geometrical constraints were introduced: bh 20< . The
following bounds were used for the design variables: 85.0 ≤≤ h , b≤5.0 .  The optimization was performed using
the Modified Method of Feasible Directions inside of the VisualDOC optimization system.

For benchmarking purposes the one-level optimization was performed first, where both one-dimensional search
points and finite difference steps points were analyzed using high-fidelity analysis (curved beam formula).  After
that the multi-fidelity optimization was performed, where the one-dimensional search points were analyzed using
high-fidelity analysis and finite difference steps points were analyzed using low-fidelity analysis (straight beam
formula).

Two separate cases were considered to study how the number of design variables may affect the number of high-
fidelity analyses.  In the first case both straight and curved beams were divided into 5 sections and in the second
case both straight and curved beams were divided into 30 sections.  Thus, the first case had 10 design variables and
10 constraints, and the second case had 60 design variables and 60 constraints.

The results for the 5-section beam are as summarized in Table 2 and Figs. 4-7.  Note, that in the history plots one
iteration includes several points of one-dimensional search and finite difference calculations.

Table 2.  Main results for the 5-section curved beam optimization problem.

Parameter Initial Value
Optimum from

Direct Optimization
Optimum from

Multi-Fidelity Optimization
Volume (V) 56.55 49.73 51.38

The total number of high-
fidelity analyses

_
185 69

The number of analyses
for finite differences

_
45 25
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 (a) Direct optimization                                      (b) Multi-fidelity optimization
Figure 4.  The objective functions history for direct and multi-fidelity optimization of a 5-section

beam (Red star for the initial design designates one or more violated constraint)

(a) Direct optimization                                               (b) Multi-fidelity optimization
Figure 5.  The stress constraints history for direct and multi-fidelity optimization of a 5-section beam

  (a) Direct optimization                                 (b) Multi-fidelity optimization
Figure 6.  The cross-sectional height, h, history for each section for direct and multi-fidelity

optimization of a 5-section beam
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 (a) Direct optimization                             (b) Multi-fidelity optimization
Figure 7.  The cross-sectional width, b, history for each section for direct and multi-fidelity

optimization of a 5-section beam

The results for the 30-section beam are summarized in Table 3 and Figs. 8-11.

Table 3.  Main results for the 30-section curved beam optimization problem.

Parameter Initial Value
Optimum from

Direct Optimization
Optimum from

Multi-Fidelity Optimization
Volume (V) 56.55 44.76 46.33

The total number of high-
fidelity analyses

_
1397 159

The number of analyses
for finite differences

_
600 510

 (a) Direct optimization (b) Multi-fidelity optimization
Figure 8.  The objective functions history for direct and multi-fidelity optimization of a 30-section

beam (Red star designates one or more violated constraint)
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 (a) Direct optimization                                                (b) Multi-fidelity optimization
Figure 9.  The stress constraint history for direct and multi-fidelity optimization of a 30-section beam

 (a) Direct optimization                            (b) Multi-fidelity optimization
Figure 10.  The cross-sectional height, h, history for each section for direct and multi-fidelity

optimization of a 30-section beam

 (a) Direct optimization                            (b) Multi-fidelity optimization
Figure 11.  The cross-sectional width, b, history for each section for direct and multi-fidelity

optimization of a 30-section beam

We also compared the absolute values of the maximum stresses from the high- and low-fidelity analyses for the
initial and final values of the design variables.  The results are summarized in Table 4.
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Table 4.  Maximum stress values for various designs predicted by high- and low-fidelity analysis.

Analysis Type Initial Design
Final Design of a Direct

Optimization of a 5-
segment Beam

Final Design of a Direct
Optimization of a 30-

segment Beam
Low-fidelity (straight beam) 24,375 14,364 14,223
High-fidelity (curved beam) 26,684 20,042 20,000

By analyzing the results of the optimization, it is possible to conclude that the proposed approach to multi-
fidelity optimization was successful both for the case of relatively small and relatively large number of design
variables.  Although the results of the multi-fidelity optimization were not as good as the results of the direct
optimization with high-fidelity analyses only, in both cases the final design of the multi-fidelity optimization was in
the region of the optimum from the direct optimization.

The savings of the multi-fidelity optimization in terms of number of high-fidelity analyses performed were
considerable for both optimization cases.  For the case of a small number of design variables less than 50% of the
high-fidelity analyses were required during multi-fidelity optimization compared to direct optimization.  For the case
of a large number of design variables less than 20% of the high-fidelity analyses were required during multi-fidelity
optimization compared to direct optimization.  Based on these results we may suggest that the most savings from
this method could be expected for the problems with relatively large number of design variables, although problems
with relatively small number of design variables also may result in considerable savings.

The multi-fidelity optimization approach worked in spite of the fact that the initial design was infeasible (some
constraints were violated) and that at the end of optimization all the stress constraints were active.  This may be
attributed to the fact that our particular low-fidelity analysis was adequate in capturing the changes in the responses
due to changes in the design variables, even though the difference in the absolute values of the stresses for the high-
and low-fidelity analyses increased towards the end of optimization.

The number of high-fidelity analyses required for multi-fidelity optimization grows slower than linear with
respect to the number of design variables in the optimization problem: for 5 design variables 69 high-fidelity
analyses were required, whereas for 60 design variables 159 high-fidelity analyses were conducted.  This
observation gives a hope of performing optimization problems with a large number of design variables for
computationally expensive analysis models.

B. Buckling of a Stiffened Plate
This optimization problem is based on a problem from the ABAQUS Example Problem Manual20 and consists of

a rectangular plate that is 10.8 m long and 6.75 m wide with a skin thickness of 5.00 mm.  The plate is reinforced
with several stiffeners in both the longitudinal and transverse directions (Fig. 12)

Figure 12.  Stiffened Plate

The boundary conditions reflect the fact that the plate represents a part of a larger naval structure.  Two
longitudinal sides have symmetric boundary conditions, and two transverse (shorter) sides have pinned boundary
conditions.  In addition springs are located at two major reinforcement intersections, representing flexible conditions
to the rest of the structure.  The finite element mesh consists of 1,975 grid points and 2,214 elements: 1,912 S4 shell
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elements, 14 S3 shell elements and 288 B31 beam elements.  The structure is made of construction steel with an
initial flow stress of 235 MPa.

The nonlinear analysis consists of two ABAQUS steps.  In the first step a gravity load is applied perpendicular to
the plane of the plate.  In the second step a longitudinal compressive load of 6.46x106 N is applied to one of the
pinned sides of the plate.  All the nodes on that edge of the plate are forced to move in unison by means of multi-
point constraints.  The analysis is quasi-static, but buckling occurs.  Initially, local out of plane buckling develops
through the plate inside of each sections delimited by the reinforcements.  Later, global buckling develops along a
front of the section that is adjacent to the applied load (Fig. 13).

Figure 13.  Buckling of a Stiffened Plate
In the optimization problem we redistribute the existing material of the plate to avoid buckling.  This is achieved

by minimizing the longitudinal displacement of the pinned (shorter) side of the plate where the load is applied, while
maintaining the initial mass of the plate.  The optimizer was allowed to add less than 2% to the initial mass of the
plate:  the mass constraint was set to 4700 kg, while the mass of the initial configuration is 4599 kg.  The following
seven design variables were considered: the skin thickness, web thickness of the main longitudinal stiffener, cap
thickness of the main longitudinal stiffener , web thickness of the transverse stiffeners, cap thickness of the
transverse stiffeners, web thickness of the small longitudinal stiffeners, and the side length of the square cross-
sectional area of the cap of the small longitudinal stiffeners represented by beam elements.  The lower and upper
bounds on all the design variables are 1.0 mm and 100.0 mm respectively.  The initial configuration was chosen to
have the same dimensions as the original ABAQUS example problem.  The initial parameter values are summarized
in Table 5.

Table 5.  Initial parameter values for the stiffened plate optimization problem.

Parameter
Notation Description Value

skin Thickness of the skin shell elements 5.0 mm

long stiff web
Thickness of the shell elements in the web of the

small longitudinal stiffeners 6.0 mm

cross stiff web
Thickness of the shell elements in the web of the

transverse stiffeners
7.0 mm

cross stiff cap
Thickness of the shell elements in the cap of the

transverse stiffeners 10.0 mm

main stiff web
Thickness of the shell elements in the web of the

main longitudinal stiffener 10.0 mm

main stiff cap
Thickness of the shell elements in the cap of the

main longitudinal stiffener
10.0 mm

b2
Side length of the square cross sectional area in the

cap of the small longitudinal stiffeners 15.0 mm

Two types of optimization were performed.  At first for benchmarking purposes a one-level optimization was
performed, where both the one-dimensional search points and the finite difference step points were analyzed using
the non-linear analysis.  Next, a multi-fidelity optimization was performed, where the one-dimensional search points
were analyzed using the non-linear analysis and the finite difference steps points were analyzed using the linear
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analysis.  Both linear and non-linear analyses were performed in ABAQUS.  The linear analysis was performed by
changing one instruction in the ABAQUS data file for non-linear analysis.  Thus, the difficulty of maintaining a
separate model for a linear analysis was eliminated.  One should note that in the case of the linear analysis the
results of the first step (gravity loading) by definition do not influence the results of the second step (compressive
load), because the loads from different steps are considered independent.  Whereas in the case of non-linear analysis
the first step loading has an influence on the second step.  In spite of this difference we considered that the relative
changes in design variables for the linear case still capture the general trends of the relative changes in the design
variables for the non-linear case.

As in the case of the curved beam optimization problem, we chose to use the Modified Method of Feasible
Directions optimization algorithm implemented in VisualDOC.  The interaction between the optimizer and the
ABAQUS analysis was implemented using VisualScript.  VisualScript provides a graphical interactive interface
between VisualDOC and any analysis program with ASCII input/output files.

The optimization results are summarized in Table 6 and Figs. 14-16.  Note, that in the history plots one iteration
includes several points of the one-dimensional search and the finite difference calculations.

Table 6.  Main results for the stiffened plate  optimization problem.

Parameter Initial Value
Optimum from

Direct Optimization
Optimum from

Multi-Fidelity Optimization
Edge Displacement (mm) 77.0 8.0 7.0

Mass (kg) 4599.0 4687.2 4691.3
The total number of high-

fidelity analyses
_

80 32

The number of analyses for
finite differences

_
28 28

 (a) Direct optimization                                      (b) Multi-fidelity optimization
Figure 14.  The objective functions history for direct and multi-fidelity optimization of a stiffened

plate.

(a) Direct optimization                                               (b) Multi-fidelity optimization
Figure 15.  The mass constraints history for direct and multi-fidelity optimization of a stiffened plate.
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 (a) Direct optimization                            (b) Multi-fidelity optimization
Figure 16. The design variable history for direct and multi-fidelity optimization of a stiffened plate.

By analyzing the obtained results we conclude that the proposed approach to multi-fidelity optimization was
successful for the stiffened plate optimization problem.  Both optimization procedures succeeded in eliminating
buckling of the plate and reducing the displacements of the pinned (shorter) side under the compressive load by an
order of magnitude.  One can clearly see that the optimum configuration from the multi-fidelity optimization is quite
different from the optimum configuration obtained by the direct optimization (Fig. 16).  Although the objective
(displacement) values are comparable for both optimizations.  This may indicate relatively flat design space, when
similar objective values could be achieved for various combinations of design variables.  Referring to the physics of
the problem, it is quite possible that one may redistribute the existing material in several ways, each of them
providing similar displacements of the pinned (shorter) side under the compressive load.

Similarly to the bending of the curved beam problem, the savings of the multi-fidelity optimization in terms of
number of high-fidelity analyses performed were considerable.  Around 40% of the high-fidelity analyses were
required during multi-fidelity optimization compared to direct optimization.

One has to note, however, that because of the iterative nature of the non-linear finite element analysis, different
configurations of the same structure (e.g., with different thickness of shell elements) take different time to converge
on the answer.  It depends on the amount of non-linearity that the structure exhibits under the imposed load
conditions.  Because of that the wall-clock time savings were not as impressive for this optimization problem when
compared to the savings in the number of non-linear analyses.  The direct optimization required 14 hours and 7
minutes to complete (average time of about 10.6 minutes per analysis), while multi-fidelity optimization required 10
hours and 29 minutes (average time of 19.6 minutes per non-linear analysis if we disregard the time for the linear
analyses).  Such difference in average computational time may be explained by the fact that linear gradients drove
the optimization procedure to the designs that took considerably longer time to converge in non-linear analysis.
Even in such unfavorable conditions the wall-clock time savings of multi-fidelity optimization with respect to direct
optimization still constitute around 25%.

 IV. Conclusions
The method of multi-fidelity gradient-based optimization was developed and tested on two example problems.

In this method the one-dimensional search points are analyzed using a high-fidelity analysis and finite-difference
steps points are analyzed using a low-fidelity analyses.  The method allows for using relatively large number of
design variables and responses in optimization that involves computationally costly nonlinear (high-fidelity)
analyses.  At the same time the proposed approach eliminates the need for direct correlation of the results between
the high- and low-fidelity analyses in the course of optimization.  However, the method puts a responsibility on the
designer to maintain both high- and low-fidelity models and to make sure that the trends in the changes of the
responses due to changes in the design variables are similar between high and low-fidelity models.  The designer
may be also responsible for calculating gradients using the low-fidelity analyses, if this capability is not directly
available in the chosen low-fidelity analysis code.

The essential feature of the proposed method is a robust gradient-based optimizer.  An example of such an
optimizer is DOT and VisualDOC from Vanderplaats Research and Development, Inc.

The proposed method gives a hope of performing optimization problems with a large number of design variables
for computationally expensive analysis models.

The possible application of this multi-fidelity optimization method may include the optimization of non-linear
structural models (e.g., in LS-Dyna or ABAQUS) when gradients are calculated using linear structural analysis
codes, such as NASTRAN or GENESIS as well as using linear modes of non-linear codes themselves.  CFD
applications with corresponding high and low-fidelity analyses are also possible.
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