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ABSTRACT

As optimization problems grow in size, modern
algorithms such as Sequential Quadratic Programming
require large amounts of computer memory. Also, the
optimizer itself begins to use considerable CPU time,
relative to the function and gradient computations.

A method is presented here, based on Sequential
Unconstrained Minimization Techniques using an
Exterior Penalty Function, which requires very little
memory to store information and does not require time
consuming optimization calculations. The penalty for
these advantages is that the optimization requires 3-5
times as many function evaluations to converge to a
solution. Examples are presented to demonstrate the
method.

INTRODUCTION

As optimization becomes more widely accepted, the
size of the problems being addressed has grown
dramatically. In structural optimization, problems with
thousands of design variables and over a million
constraints are now being addressed. For multidiscipline
(MDO) problems, the number of variables and
constraints can be even larger. In this case, due to our
inability to handle very large numbers of variables,
relatively complicated decomposition methods have
been resorted to.

While many common methods such as Sequential
Quadratic Programming can theoretically handle very
large problems, two issues quickly arise. First, these
methods require solution of a large and often time
consuming sub-optimization problem and, second, they
require storage of large amounts of information (both
gradients and Lagrangian approximation information).
This second issue can be dealt with using spill logic, but
this can also be complicated and inefficient.
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This suggests a need for methods which will solve very
large problems with limited central memory and which
avoid large sub-optimization tasks. Such a method will
be presented here. It has been developed primarily for
structural optimization, but is equally useful for MDO
tasks where gradients are available. In either case, it is
desirable that high quality approximations are available
since the new algorithm requires more function and
gradient evaluations than before.

BACK TO THE FUTURE

In the 1960’s Sequential Unconstrained Minimization
Techniques (SUMT) were popular [1]. Over the years,
these methods were largely abandoned in favor of SQP
and similar methods. Recently, there has been renewed
interest in SUMT [2].

In the present research, several SUMT approaches were
studied, with the (somewhat surprising) result that a
modified exterior penalty function method achieves the
goals of this study best.

Here, the original constrained optimization problem is
converted to a sequence of unconstrained problems of
the form;

Minimize
O(X) = F(X) (1)
+ L > q; {MAX]O, gj(X)]}
i=1
Subject to;
L U .
X=X 2X] i=1,n (2)

where X is the vector of design variables, F(X) is the
objective function and g;(X) are the constraints.

The subscript/superscript, p is the outer loop counter
which we will call the cycle number. The penalty
parameter, rp, is initially set to a small value and then
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increased after each design cycle. The only difference
between this formulation and the traditional exterior
penalty function is the addition of individual penalty

parameters, qf , on each constraint. These multipliers

are similar to the Lagrange multipliers used in the
Augmented Lagrange Multiplier Method [3], but are
calculated by a proprietary formula. Equation (2)
imposes limits on the design variables (side constraints)
which are handled directly.

If equality constraints are considered, they can just be
converted to two equal and opposite inequality
constraints.

The unconstrained penalized function defined by Eq. (1)
is solved by the Fletcher-Reeves conjugate direction
method [4], which requires virtually no memory.

The gradient of @(X) is
optimization process.

required during the

VO(X) = VF(X) (3)

% ¢} {(MAX[0, g/(X)Vg;(X)1}
s

Here, the choice of the exterior penalty function
becomes apparent because only gradients of violated
constraints are required. Furthermore, it is not necessary
to store all gradients at once. Noting that Eq. (3) is a
simple addition of gradient vectors, in the limit, we can
calculate only one gradient (objective or constraint) at a
time.

As an indication of computer memory required by
various methods, the proposed method is compared with
the three methods used by the DOT program [5]. This is
presented in Table 1, where MMFD is the Modified
Method of Feasible Directions, SLP is the Sequential
Linear Programming Method and SQP is the Sequential
Quadratic Programming Method.

Table 1: Storage Requirements

Number of Design Variables

Method 100 1,000 10,000

MMFD 53,000 5,000,000 5x103
SLP 113,000 11,000,000 11X108
SQp 119,000 11,500,000 12X108
Proposed 1,400 14,000 140,000

Method TO TO TO

11,000 1,000,000 10x107

The memory requirements for the DOT methods are
number of words for storage of all internal arrays. For
the proposed method, the two memory requirements are
the minimum, where only 1 gradient vector is calculated
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at a time, and the maximum, were all possible gradients
are stored in memory. The number of constraints equals
the number of design variables.

As can be seen, as the problem size grows, storage
requirements for the present methods grow
exponentially. However, for the proposed method,
storage is much less and the requirement grows only
linearly with problem size. If there are many more
constraints than design variables, the requested storage
for the present methods grows even more rapidly.

As noted above, the unconstrained minimization sub-
problem is solved by the Fletcher-Reeves algorithm,
Here, the search direction is found as;

Ifg=1
st = _vo(x®hy ()
Ifg>1
s = _vox? Hy+pst! (5)
where
voxi™h
5 - [ve 4)!2 ”
Vo xd 3|

and q is the iteration number.

In the present study, once the search direction is
calculated, the one-dimensional search is performed
using polynomial interpolation.

It can be argued that more modern quasi-Newton
methods are a better choice for solving the sub-problem.
However, these methods require much more storage.
Also, computational experience has shown that the
Fletcher-Reeves algorithm is comparable in efficiency
and reliability if carefully programmed.

During the unconstrained minimization sub-problem,
almost no effort is required to calculate the search
direction, so the computational time spent in the
optimizer itself is negligible. The cost of optimization is
almost completely the cost of analysis and gradient
computations. Thus, it is desirable that high quality
approximations are available, as is the case in modern
structural optimization.

EXAMPLES

To evaluate the proposed method, a prototype program
was created and used to solve a variety of optimization
problems. Here, preliminary results are presented for
several design examples.

Cantilevered Beam

The cantilevered beam shown in Figure 1 is to be
designed for minimum material volume. The design
variables are the width b and height 4 at each of N
segments. We wish to design the beam subject to limits
on stress (calculated at the left end of each segment),
deflection under the load, and the geometric
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requirement that the height of any segment does not
exceed twenty times the width.

The design task is now defined as;

Minimize
N
V= 3 bbbyl @)
i=1
Subject to;
%_1<0 i = 1,N (8
'6—_ = 1 =1, )
hl-—20bi$0 i=1,N C))
Yy
N o1<0 (10)
y
biZ 1.0 i=1,N (11)
h;>5.0 i=1N (12)
P
! 2
3 \ 5 l
————————— L——-————————————-———————————-—————————>x
e ], 1 A 1, I ——»,
|
| L
y
i P=50,000N
E =2.0x10" N/em®
&, L =500 cm
| G = 14,000 N/em®
e~ y=25cm

Cross section

Fig. 1 Cantilevered Beam

Here & is the allowable bending stress and y is the
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reduced storage logic was used and so the number of
gradient evaluations was increased (each time control is
returned to the user for gradients, it is considered a
gradient evaluation in Table 2). Depending on how
gradients are calculated, this can increase the run time,
but otherwise will have no effect on the optimum.

Table 2: Optimization Results

INITIAL |OPTIMUM|OPTIMUM  OPTIMUM
VALUE | (0n=1000) | (n=5000) | (n=10000)
OBJECTIVE | 100,000 | 63,670 63,650 63,905
MAXg 0.5625 3.73E-5 8.02E-5 | -4.34E-5
# CYCLES 6 6 10
FUNCTION 157 173 363
EVALS
GRADIENT 37 40 148
EVALS

The minimum storage requirements for optimization are
approximately 11n + 3m, where n is the number of
design variables and m is the number of constraints.
Additional storage will be used, if available, up to
another n*m. For the 10,000 wvariable (10,001
constraints) problem given above, a minimum of about
140,000 words and a maximum of just over 100 million
words of storage will be used. In this example, 30
million words were specified and the reduced storage
logic was used. By comparison, the SQP method
contained in the DOT optimizer [5] would require over

1.2X10° words to store the needed information.

As a second case, this problem is solved by deleting the
displacement constraint of Eq. 10. In this case, the
optimum should be fully constrained (the number of
active constraints equals the number of design
variables). The theoretical optimum is 53,714 if the
beam height is a continuous function.

Table 3 shows the results for this case, where the
number of active constraints within 5% at the optimum
are shown.

Table 3: Optimization Results

allowable displacement. o; is the bending stress at the INITIAL |OPTIMUM|OPTIMUM |OPTIMUM
left end of element 1 and yy; is the displacement at the tip VALUE | (1=1000) | (n=5000) | (n=10000)
of the beam. This is a design problem in n = 2N OBJECTIVE
variables. There are N + 1 nonlinear constraints defined 100,000 | 53,867 33,713 33,826
by Egs. (8) and (10), N linear constraints defined by Eq. MAX g 0.3393 | 1.55E-4 | 5.38E-4 | 6.06E-4
(9), and 2N side constraints on the design variables
defined by Egs. (11) and (12). #CYCLES - 6 7 9
Here, N=500, 2500 and 5000 was used, to create # ACTIVE 127 999 4970 9839
problems of n = 1000, 5000 and 10,000 design CONSTR.
\ﬁ{)llaebées, respectively. The solutions are presented in FUNCTION ] 796 189 317

’ EVALS
For the 10,000 variable case sufficient storage was not
provided to store the desired number of constraint GRADIENT - 46 45 205
gradients, so a maximum of 2986 gradients were EVALS
calculated at any one time. Because more constraint
gradients than this were required during optimization,
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While a true fully constrained optimum is not achieved
for large numbers of variables, it is very close to fully
constrained, indicating a high degree of robustness.

Topology Optimization

The GENESIS structural analysis and optimization
program [6] will optimize structures using
approximation concepts. When solving topology
optimization problems, the number of design variables
can become very large.

Here, a classical problem known as the Mitchell truss is
designed using GENESIS. The design conditions are
shown in Figure 2

Fig. 2 Topology Design Conditions

The goal is to find the structure supported by the round
bar and subject to a single point load on the right, as
shown in the figure. The initial design is a planar
structure made up of over 47,000 quadrilateral plate
elements filling the design region. GENESIS treats the
density of each element as an independent design
variable, where the “density factor” can range from zero
to one. In this case symmetry was imposed about the
horizontal mid-plane for the left half of the structure,
leaving a total of just over 35,000 independent design
variables. Young’s modulus is linked to the density, so
as the density approaches zero, so does the stiffness.

We wish to find the optimum structure which is as stiff
as possible while using only 10% of the original
material.

The Figure 3 shows the optimum topology obtained by
GENESIS. The approximate optimization phase of
GENESIS required about seven percent of the total run
time. Of this, the vast majority of time was spent
evaluating the approximate functions and their
gradients.

Fig. 3 Optimum Topology

As a final example, consider the simplified wing model
shown in Figure 4.

Fig. 4 Wing Model

This example was also solved using the GENESIS
structural analysis/optimization program, were the
approximate optimization sub-problem was solved
using the proposed method.

The structure was modeled with 2400 quadrilateral
elements for the skins, spars and ribs and 600 rod
elements for the spar caps. The skins, spars and ribs
were modeled using composite elements with four
thickness design variables per element. The spar caps
were isotropic, with a single cross sectional area design
variable per element.

A single static load case of uniform lift was imposed,
along with an eigenvalue load case.

The objective was to minimize mass. There were a total
of 10,200 independent design variables, 232,000 stress
and failure index constraints and a lower bound
constraint on the first fundamental frequency.

Due to memory requirements of GENESIS, using its
constraint deletion feature, only about 41,000
constraints were retained in the approximate
optimization phase.
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Only about six megawords of storage were allocated to
the optimizer, allowing for the calculation of 580
gradients at a time.

GENESIS solves optimization problems by creating
high quality approximations which are sent to the
optimizer. Thus, several analysis/optimization cycles
are used to find the optimum.

Figure 5 shows the optimization progress, where the
normalized objective function and maximum constraint
violation are plotted.
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Fig. 5 Optimization History

Because a limited number of constraints were retained
for the approximate optimization phase, this led to
“constraint switching.” Thus, during a given design
cycle, the approximate optimum would be feasible, but
when an analysis was performed, one or more non-
retained constraints were found to be violated. This was
overcome during the optimization.

At the optimum, there were 7048 active stress and
failure index constraints, one active -eigenvalue
constraint and 3846 active side constraints.

SUMMARY

An algorithm has been developed for solving very large
optimization tasks, which uses limited central memory
and which avoids solution of a large sub-optimization
task. The memory requirements grow only linearly with
problem size. Preliminary results with this algorithm
indicate that it can reliably solve very large optimization
tasks with reasonable efficiency.
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