8th AIAA/JUSAF/NASA/NSSMO
Symposium on Mulitidisciplinary
_ Analysis and Optimization
6-8 Sept. 2000 Long Beach, CA

(¢)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

A00-40080

ATAA-2000-4819

EFFICIENT OPTIMIZATION ALGORITHMS FOR PARALLEL
APPLICATIONS

Gerhard Venter” (gventer @vrand.com) and Brian Watson® (bwatson@vrand.com)

Vanderplaats Research & Development, Inc., 1767 S. 8th Street, Suite 100, Colorado Springs, CO 80906

ABSTRACT

The present paper investigates parallelization of
general purpose numerical optimization algorithms,
where the optimization algorithm is coupled with an
existing analysis program. Since these optimization
algorithms may be coupled to almost any analysis,
parallelization of the analysis itself is not considered.
The paper considers a typical structural finite element
model to investigate the parallel efficiency of a number
of existing gradient-based algorithms and proposes a
new algorithm for massively parallel applications. The
new algorithm is based on statistical design of experi-
ments (DOE). Finally, the paper also investigates the
parallel efficiency when implementing these algorithms
on different parallel architectures. For the existing
gradient-based algorithms considered, the sequential
linear programming (SLP) algorithm had the highest
parallel efficiency. Initial results for the DOE based
algorithm seems promising, especially when coupled
with a parallel gradient-based algorithm. Finally, our
investigation indicates that a shared memory architec-
ture may not be the best choice for parallel optimization
using numerical simulations with significant amounts of
disk I/O.

INTRODUCTION

Despite many years of research, resulting in the
availability of several general purpose optimization
programs, optimization has only realized limited suc-
cess in the industrial environment. There are many
reasons for this lack of acceptance, including (a) lack of
user familiarity with optimization concepts, and (b)
immense computational resource requirements for
general purpose optimization. The first issue is due to
the fact that optimization is rarely taught at the under-
graduate level, creating the need for user training, that
companies are often unwilling to invest in. The
VisualDOC! program, from VR&D, was created to
address this issue. It provides an intuitive graphical

* Senior Research and Development Engineer, Member AIAA

Copyright © 2000 Vanderplaats Research & Development, Inc.
Published by the American Institute of Aeronautics and
Astronautics, Inc. with permission.

1

user interface, guiding the user through the steps re-
quired to set up an optimization problem. This envi-
ronment allows engineers to apply optimization to real
problems with minimal training. The high computa-
tional resource requirement of general purpose optimi-
zation stems from the general purpose nature of the
problem and is the focus of this paper.

Engineers typically use tools that were developed
for performing only a single analysis. To perform
optimization using these tools, a large number of analy-
ses are required, either to provide gradient information
via finite difference calculations, or to provide data for
response surface or other non-gradient based optimiza-
tion methods. A typical industrial analysis can require
many hours of computer time. Given the time con-
straints that are placed on design engineers, this makes
many potential optimization problems impractical.
Parallel processing has the potential to reduce the time
requirements such that general purpose optimization
becomes practical for a wide range of industrial appli-
cations.

Most general purpose optimization techniques are
gradient-based. In general, gradient-based optimization
algorithms reach an optimum design point by moving
from one design point to the next. This process of
moving from one design point to the next typically
consists of calculating the gradient values of the objec-
tive function and active constraint set to obtain a search
direction, followed by a one-dimensional search in that
search direction. The one-dimensional search deter-
mines how far to move in the search direction and
identifies the next design point where gradient calcula-
tions will be performed. Because typical analysis pack-
ages do not generally provide gradients, most general
purpose optimizers employ finite difference gradient
calculations to obtain the gradients, and VisualDOC is
no exception. The finite difference gradient calcula-
tions typically dominate the computational time re-
quired to complete the optimization, are independent
and easily parallelized. The authors® first investigated
the parallelization of the finite difference calculations in
existing VisualDOC algorithms. Several other studies
(e.g., Rogers3, Sikiotis®, El-Sayed5 and Watsonﬁ) have
also focused on the parallelization of the gradient cal-
culations, with moderate success. The present paper
provides an overview of previous results obtained by

American Institute of Aeronautics and Astronautics



(¢)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

the authors related to the parallelization of existing
gradient-based algorithms and the potential efficiency
gain that may be obtained from these algorithms. New
results obtained from an improvement implementation
of the parallel SLP algorithm, and results using a 512
processor Origin 2000 (NASA Ames Research Center)
are also provided.

Unless there are also a large number of independ-
ent design variables, the efficiency gain from paral-
lelizing the finite difference gradient calculations is
limited, especially in a massively parallel environment
with potentially 1,000s of available processors. For
forward difference calculations, one can use a maxi-
mum number of processors equal to the number of
independent design variables. For central difference
calculations, the number of parallel processors that can
be utilized is equal to two times the number of inde-
pendent design variables. Due to these limitations, it is
necessary to consider radically new optimization algo-
rithms for massively parallel applications. The present
paper makes some initial progress in this direction, by
proposing a new DOE-based algorithm, specifically
designed for massively parallel applications.

PARALLEL IMPLEMENTATION

All algorithms discussed in the present paper im-
plemented a master-slave paradigm. When multiple
analyses are required, the master process allocates the
tasks to all available slave processors. When a slave
finishes its task, it again becomes available, and can be
allocated another task (e.g., Smith”). This paradigm is
ideally suited to a heterogeneous parallel environment,
such as a local area network of workstations, because it
is intrinsically dynamically load balanced. That is,
faster processors will be allocated more tasks. Also,
this scheme requires only minimal inter-processor
communication. The design variable values are sent to
the slaves, and the response values are sent back to the
master.

The results presented in the present paper were
obtained from two systems, in both cases using the
message passing interface (MPI) standard for message
passing. The first system was a heterogeneous cluster
of existing UNIX and Windows NT workstations,
available at VR&D. These machines were connected
using a local area network and we used the MPI imple-
mentation contained in the local area multiprocessor
(LAM) software originally developed by Ohio State
University. The second system was a shared memory,
512 processor Origin 2000 available from NASA Ames
Research Center. Throughout the paper it is clearly
stated what system, and how many processors were
used to generate results.

2

EXAMPLE PROBLEM

Structural optimization of a typical aircraft wing
was considered as an example problem for testing and
evaluating parallel algorithms. The wing structure
considered is constructed of aluminum and has a length
of 70 ft. A finite element model of the wing was con-
structed to evaluate the required stresses, displacements
and frequency constraints. The linear finite element
analyses required during the optimization process were
performed using GENESIS®. The finite element model
consisted of 2,400 two-dimensional shell elements
(CQUAD4), 600 one-dimensional truss elements
(CROD) and has a total of 1,917 nodes. This finite
element model is shown graphically in Fig. 1.

Figure 1: Finite element model for the wing example
problem.

Three load conditions, typical of an aircraft wing,
are considered during the optimization as follows:

¢ Load Case 1 (Static): Normal lift and engine
weight

e Load Case 2 (Static): Landing, half lift and
engine weight

¢ Load Case 3 (Frequency): Fundamental fre-
quency

The optimization problem is defined as minimiz-
ing the mass of the wing with the three load cases ap-
plied and subject to stress, displacement and natural
frequency constraints, resulting in a total of 21,648
constraints. The problem has a total of 125 design
variables. One hundred of these design variables repre-
sent thickness values of groups of shell elements with
lower bounds of 0.02 in, upper bounds of 1.00 in and
initial values of 0.2 in. The remaining twenty-five
design variables represent the cross-sectional area of
groups of rod elements, with lower bounds of 0.5 in,
upper bounds of 2.0 in and initial values of 1.0 in.

The GENESIS software was used to perform the
finite element analyses (i.e., function evaluations) re-
quired for all the parallel optimization algorithms

American Institute of Aeronautics and Astronautics



(¢)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

investigated here. = However, although GENESIS
provides excellent finite element analysis capabilities, it
is primarily a powerful structural optimization tool. To
obtain a baseline optimum design for validating our
parallel results, the wing structure was optimized using
GENESIS. Note that using the optimum result obtained
by GENESIS we may consider any number of design
variables up 125 and still compare our results with that
found by GENESIS. For example if we consider ten
design variables, we may use the initial values for these
ten design variables while setting the values of the
remaining design variables to the optimum values ob-
tained from GENESIS.

EXPLOITING PARALLELISM IN EXISTING
ALGORITHMS

The computational time for gradient-based, gen-
eral purpose optimization algorithms may be divided
into three main parts:

e  Analyses required for gradients
*  Analyses required for one-dimensional search
e  Other optimization computations

For problems with moderate numbers of design
variables, the time to complete the analyses, both for
gradient and one-dimensional search calculations,
dominates the total solution time. Additionally, the
number of one-dimensional search calculations is fairly
independent of the number of design variables. How-
ever, the number of analyses required to perform the
finite difference gradient calculations increases with the
number of design variables and will dominate the total
solution time for any problem with more than just a few
design variables.

This section summarizes some initial results ob-
tained by parallelization of the finite difference gradient
calculations of current VisualDOC algorithms. These
include the Modified Method of Feasible Directions
(MMEFD), Sequential Linear Programming (SLP) and
Sequential Quadratic Programming (SQP). Next, an
improved implementation for the parallel SLP algo-
rithm is introduced, and finally the scalability of the
SLP algorithm on a 512 processor shared memory
Origin 2000 is investigated.

Initial results for existing algorithms

The authors investigate the effectiveness of paral-
lelizing only the finite difference gradient calculations
(Ref. 2) of the existing optimization algorithms within
VisualDOC. This is mainly due to the fact that the
finite difference gradient calculations are independent
and are easily parallelized, while the one-dimensional
search is inherently an iterative process that is difficult

3

to parallelize. A function, F that depends on a single
variable, x, may be used to illustrate how the finite
difference gradient calculations are performed in paral-
lel. The gradient of F with respect to x at the point x; is
defined as

dF (x)
dx

X=Xy

F(x) - F(xp)

x_xO

= lim

X=X

(M

The gradient of F with respect to x may be ap-
proximated at the point x, by perturbing x with a small
value, A, as follows:

dF (x)|
dx

- F(xg+h)—F(xy)
. .

@

lees,

The right hand side of Eq. (2) is the forward finite
difference formula for the gradient of F with respect to
x at x=xy. For the case where F is a function of many
variables, the right hand side of Eq. (2) is repeated for
each variable, resulting in a number of function evalua-
tions that are independent of each other. It is thus fairly
easy to parallelize the finite difference gradient calcu-
lations, in which case a number of processors equal to
the number of design variables may be used.

In Ref. 2 the authors considered the wing optimi-
zation problem introduced in the previous section. The
problem was investigated first using twelve and then
using twenty-four design variables. In each of the two
cases, the MMFD, SLP and SQP algorithms of
VisualDOC were used to perform the optimization, thus
studying both the effects of the problem size and opti-
mization algorithm on the overall parallel efficiency.
The parallel runs were performed on a cluster of six
workstations consisting of SUN, SGI and Windows NT
machines. In all cases the optimum results found by the
parallel algorithms showed excellent correlation with
the optimum results obtained from GENESIS.

The results obtained indicate that for the serial
implementation, the MMFD algorithm was the most
efficient in solving the example problem. However, in
the parallel implementation the SLP algorithm was
most efficient, even though it required significantly
more analyses. The reason for the higher parallel effi-
ciency of the SLP algorithm is the fact that it does not
have one-dimensional search calculations. Addition-
ally, the results show that the number of one-dimen-
sional search calculations remain fairly constant as the
number of design variables increases, thus increasing
the parallel efficiency of all the algorithms for larger
problem sizes.

In all cases, performing the gradient calculations
in parallel resulted in a significant increase in perform-
ance, as summarized in Table 1. In Table 1, the slowest
serial time represents a worst case scenario and

American Institute of Aeronautics and Astronautics



indicates the time it would take to perform the
optimization in series using the slowest processor of the
virtual parallel machine. In contrast, the fastest serial
time indicates the time it would take to perform the
optimization in series using the fastest processor of the
virtual parallel machine.

Improved parallel SLP algorithm

As illustrated in the previous section, the SLP al-
gorithm had the highest parallel efficiency of the cur-
rent VisualDOC algorithms. However, since publishing
our initial results, we realized that the parallel effi-
ciency of the SLP algorithm could be greatly improved.
The initial parallel SLP implementation considered
each design iteration as a two-step process. First, the
current design point is evaluated in a serial manner,
using a single processor. Next, the finite difference
gradient calculations at the current design point are
performed in parallel. However, it is very easy to
evaluate both the current design point and the finite
difference gradient calculations at that point in a single
step, all done in parallel. In the ideal case, where one
has a number of processors equal to the number of
design variables plus one, the improved SLP imple-
mentation can reduce the overall time required to com-
plete an optimization by a factor of 2.

However, the SLP algorithm implemented in
VisualDOC does not always calculate gradients at each
design iteration. If the new design iteration results in a
worse objective or larger constraint violations,
VisualDOC automatically reduces the move limits and
does a new function evaluation in the same search
direction, without evaluating any gradients. Due to this
process of reducing the move limits without re-
evaluating the gradients, the maximum speedup of 2 is
not always realized. However, the speedup associated
with using the new implementation is generally still
significant.

To test the increase in parallel efficiency, we ap-
plied both the old and the new SLP implementations to
the wing problem with twelve design variables. This
problem was run on the 512 processor Origin 2000,
using thirteen processors and the timing results are

(¢)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

summarized in Fig. 2. For this example, the original
implementation required 43.72 minutes to complete the
optimization, while the new implementation required
only 24.33 minutes, a speedup of 1.8. As mentioned,
the maximum speedup of 2 is not always realized, but
in general the speedup is still significant.

457

40

W
«

N W
o O

== N
(3 B =]

Total Time [min.]

e
o o

Initial SLP Improved SLP

Figure 2: Total time for the 12 design variable wing
problem, using 13 processors.

Large scale application

Using our initial results as a basis, we wanted to
investigate the scalability of our implementation to
large numbers of processors. We gained access to a
512 processor Origin 2000 at NASA Ames Research
Center and decided to port and test our algorithms on
this machine. Since the SLP algorithm had the highest
parallel efficiency, even with the original implementa-
tion, we decided to concentrate our efforts on this algo-
rithm.

The Origin 2000 is a shared memory machine and
the 512 processor machine at NASA Ames Research
Center is currently the largest of its type in the world.
We used the new SLP implementation and considered
several different cases where the number of design
variables was equal to 12, 24, 75 and 125. In each case
we used a number of processors equal to the number of
design variables plus one. The resuits are summarized
in Fig. 3. Due to small variations in the number of

Table 1: Total time to complete the twelve design variable case.

Twelve Design Variables Twenty Four Design Variables
MMFD SLP SQP MMFD SLP SQP
Parallel Time [s] 7,479 6,753 5,964 12,300 8,754 9476
Slowest Serial Time [s] 31,020 52,580 36,080 56,100 72,380 70,620
(4.15) (7.79) (6.05) (4.56) (8.27) (7.45)
Fastest Serial Time [s] 12,267 20,793 14,268 22,185 28,623 27,927
(1.64) (3.08) (2.39) (1.80) (3.27) (2.95)

(Values in parentheses are the speedup factor between the parallel and serial optimizations)

4

American Institute of Aeronautics and Astronautics



design iterations required to solve each problem, Fig. 3
shows the average time per design iteration as a func-
tion of the number of processors for each problem.

~

(03]

at

el

»

N

-

Time per Design Iteration [min.]
)

o

40 60 80 100 120 140

Number of Processors

20

o

Figure 3: Average time per design iteration as a func-
tion of the number o processors for the wing problem
(number of processors is equal to the number of design
variables plus one).

The results of Fig. 3 were unexpected, instead if
being independent on the number of design variables
(and thus the number of processors), the overall time
increased with an increase in the number of design
variables.

We decided to further investigate the results of
Fig. 3, concentrating on the 75 and 125 design variable
cases. For each of these two cases, we performed the
optimization using different numbers of processors.
For the 75 design variable case, we used 19, 38 and 76
processors and for the 125 design variable case we used
16, 32, 63 and 126 processors. We found that, except
for a small number of processors (less than roughly 30
to 40), increasing the number of processors also in-
creased the overall solution time. This is clearly illus-
trated if we calculate the average time required to
evaluate a set of parallel computations. For this calcu-
lation, a set of parallel computations represents a num-
ber of function evaluations equal to the number of
processors used. In the ideal case, this time should be
constant and equal to the time of a single analysis per-
formed on a single processor. We calculated the aver-
age time, using the following equation:

T, 4N

total * V' proc

T = PO 3
o Niter(Ndvar +1) ( )

where T,,, denotes the average time required to evalu-
ate a set of parallel computations and T, denotes the
total time required to complete the optimization. Addi-
tionally, N,,,. denotes the number of processors used in
the optimization, Ny, denotes the number of design

5

(¢)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

iterations required to complete the optimization and
Nuyor denotes the number of design variables of the
optimization problem. The results of all previous cases
(different number of design variables and processors)
are shown in Fig. 4.

~

N

(6]

S

/

Time per Parallel Analysis [min.]

3 /
2
i .~
Sy
0+
0O 20 40 60 80 100 120 140

Number of Processors

Figure 4: Average time per set of parallel calculations.

Figure 4 clearly illustrates that the average time
required to evaluate a set of parallel computations
greatly increases with an increase in the number of
processors. In explaining these results, remember that
we implemented a master-slave paradigm with minimal
inter-processor communication. In our implementation
the master processor sends the current design variable
values to the slave processors and the slave processors
send back the response values to the master. As a result
of our implementation, we do not consider inter-proces-
sor communication as the problem. However,
GENESIS does generate a fairly large amount of output
that is stored on the hard disk. It is our inclination that
it is this disk I/O that creates a bottleneck and deterio-
rates the parallel efficiency of our algorithms when
using larger number of processors.

Discussion

Even though the results showed a significant de-
crease in the overall time required to perform an opti-
mization, there is one major drawback when paralleliz-
ing existing gradient-based algorithms in a massively
parallel environment: The number of processors that
may be used by the gradient calculations is limited by
the number of independent design variables in the
problem. For forward finite difference calculations, the
maximum number of processors that can be used is
equal to the number of independent design variables,
while for central difference calculations it is equal to
twice the number of independent design variables. This
limitation on the number of processors that can be used
by parallelizing existing algorithms makes the approach
more useful for distributed computing on an existing

American Institute of Aeronautics and Astronautics



network of workstations than for massively parallel
applications.

Additionally, for our course-grained parallel im-
plementation, the shared memory Origin 2000 may not
be the best platform to achieve optimal performance
when using large numbers of processors. With the little
inter-processor communication and substantial disk I/O
associated with our implementation, it may be better to
utilize a cluster of workstations, each with its own
processor, memory and hard disk.

NEW ALGORITHM FOR MASSIVELY
PARALLEL APPLICATIONS

Based on the results of the investigation summa-
rized in the previous section, it is concluded that new
optimization algorithms specifically designed for a
massively parallel environment are required to take full
advantage of the parallel efficiency within such an
environment. When considering these new algorithms
it is important to note that the most efficient algorithm
for a non-parallel application is not necessarily the most
efficient in a parallel environment. This is clearly il-
lustrated in the previous section, when comparing the
MMEFD and SLP algorithms. In considering an algo-
rithm for massively parallel applications, the total num-
ber of analyses is less important than the efficiency of
the algorithm in using large numbers of processors
simultaneously.

DOE-based massively parallel algorithm

We propose a new design of experiments (DOE)
based parallel optimization algorithm for application
with massively parallel machines. The basic algorithm
may be summarized as:

1. Use DOE to obtain a set of design points that
are spread throughout the current design space.

2. Evaluate all points identified by the DOE in
parallel and keep track of the best design
point.

3. Center and optionally change the size of the
design space about the best point found in
Step 2.

4. Make sure the new design space does not vio-
late any of the original side constraints by ad-
justing the bounds if necessary.

5. Go back to step 1 and repeat until conver-
gence.

If enough processors are available, the time re-
quired to complete each design iteration is equal to the
time of a single analysis. To reduce the overall time
required to complete the optimization, the goal is to

6

(¢)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

perform the smallest number of required design itera-
tions.

Dealing with unconstrained optimization problems
using the current algorithm is straightforward. To deal
with constrained optimization problems, we need to
take account of the constraints in defining the best
design point. In general, the algorithm has two phases
with different priorities. The first phase occurs when
the best design point is infeasible. In this phase, the
algorithm’s priority is to find a feasible design, irre-
spective of the objective function value. The second
phase occurs once a feasible design point has been
found. In this phase, the algorithm’ priority is to im-
prove the objective function value, irrespective of the
constraint margin. Note that once a feasible point is
found, no more infeasible design points are considered
in determining the best design.

One of the most important factors influencing the
efficiency and robustness of the proposed DOE based
algorithm, is the windowing or move limit strategy used
during the optimization process. The goal is to identify
a small region, referred to as a window, about the opti-
mum solution within the original design space. The
windowing strategy used here always centers each new
window about the best design point found in previous
design iterations. Note that the best design point is
saved from one design iteration to the next and is only
replaced if a better design is found. Additionally, the
window size is potentially adjusted for each new itera-
tion.

First, a factor is defined for reducing the window
size from one iteration to the next. This factor is ad-
Justed at the end of each design iteration by multiplying
the current factor with a constant number greater than
one. The effect is a more aggressive reduction in win-
dow size as the optimization progresses. The factor for
reducing the window size is not directly applied to the
current window. Instead, a linear interpolation is used
to calculate the actual factor used for reducing the win-
dow size, as follows:

'Ci_Bi|
o =
C, -

Adj, = a; +(1 -, JOrigAdj “

Equation 4 is applied on a per design variable ba-
sis. In Eq. 4, C; denotes the center point, B; denotes the
best point and L; denotes the lower bound for design
variable i. OrigAdj denotes the original factor for re-
ducing the window size (this is adjusted after each
design iteration as discussed above) and Adj; denotes
the actual factor that will be used for design variable i.
The result of this linear interpolation is that the window
size will not be reduced when the best point is located

American Institute of Aeronautics and Astronautics



on a boundary, while it will be reduced with a factor
equal to OrigAdj when the best point is located at the
center.

Additionally, a history of the location of the best
design point with respect to the bounds of the current
window is kept. Again this is done on a per design
variable basis. If the best design point hits the same
bound twice, a fixed factor is used to enlarge the win-
dow size for that design variable. However, if a design
variable oscillates between its upper and lower bounds,
the window size for that design variable is reduced by a
fixed factor.

Another important aspect of the proposed algo-
rithm is the DOE used to identify design points during
the search. Most statistical DOE algorithms minimize
some measure of variance associated with an assumed
mathematical model that describes the underlying re-
sponse. The result is a set of design points that are
located on the boundary of the design space. In our
case, a non-traditional design that is independent of the
underlying mathematical model and that spreads the
design points throughout the design space (also referred
to as a space filling design) is required. Two such
designs are the modified maximum distance design of
Audze and Eglais’ and orthogonal arrays. Owen'
implemented a series of orthogonal arrays in freely
available software that is ideally suited for our purpose
and was implemented in the example problem.

Results

For the example problem, we used an orthogonal
array design of experiments, using the software by
Owen'. This DOE resulted in a design with 50 design
points for the 10 design variable problem considered
here. Each design variable takes on 5 different values
between its upper and lower bounds.

The DOE-based algorithm used a factor of 3.0 for
reducing the window size form one iteration to the next.
This value is adjusted by increasing its value with 10%
each design cycle is completed. Additionally, the fixed
factors for enlarging the window size when the same
bound is hit more than once and for reducing the win-
dow size in the cases of oscillation between the upper
and lower bounds were both taken as 2. Finally, the
algorithm was setup to complete ten design cycles.

The objective function history as a function of de-
sign iterations is shown in Fig. 5. Although some de-
sign points considered during the optimization were
infeasible, the best design for each design cycle shown
in Fig. 5 are feasible. Figure S illustrates that the pro-
posed algorithm was able to significantly reduce the
objective function within the first three design itera-

7

(¢)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

tions. However, after the 3rd design iteration the algo-
rithm was slow to improve the best design point.

28

N

N

~N O
I

N
n 92
[o> B &3]

)
o
o

N
[3;]

)
N
= o

Best Objective Function Value

N
@
)

\V]
w

2 3 4 5 6 7 8 9 10

Design Iteration

—_

Figure 5: Objective function history for the DOE
based algorithm

The best design point found after ten iterations is
summarized in Table 2. Table 2 also contains the opti-
mum results found by GENESIS. Note that the best
objective function value found by the DOE based algo-
rithm is only 1.7% different from that found by
GENESIS.

Table 2: Optimum results found by GENESIS and by

the DOE based algorithm
Parameter GENESIS DOE Based
Results Results
Mass 24.745 25.177
Thickness 1 0.41255 0.42051
Thickness 2 0.43578 0.41161
Thickness 3 0.43426 0.55898
Thickness 4 0.42493 0.49154
Thickness 5 0.43661 0.44099
Thickness 6 0.43313 0.37624
Thickness 7 0.42713 0.63151
Thickness 8 0.42077 0.50812
Thickness 9 0.40779 0.25192
Thickness 10 0.39425 0.30998

Improvement DOE-based algorithm and future work

The proposed algorithm is efficient in narrowing
the design space about the optimum solution. However,
the algorithm is slow in converging on a final optimum
solution. This raises an interesting point of how to
exploit the advantages of this new algorithm while
avoiding its weaknesses. We decided to investigate an
alternative two-step process to enhance the convergence
characteristics of the DOE-based algorithm. An exam-
ple of such a two-step process would be to first apply

American Institute of Aeronautics and Astronautics



the DOE-based algorithm for a few design iterations to
explore the design space and identify a reasonably good
design point. The next step is to use the design point
identified by the DOE-based algorithm as a starting
point for a parallel gradient-based algorithm. The idea
is to start the gradient-based algorithm close to an op-
timum solution and hence improve the convergence
characteristics of the DOE-base algorithm. Because of
the high parallel efficiency of the improved parallel
SLP algorithm, we decided to use this algorithm in the
second step.

We used the best design point after the third de-
sign iteration of the DOE-based optimization (Fig. 5) as
a starting point for the SLP algorithm. Note, that we
used the original bounds for the design variables and
only changed the starting point. From this starting
point, the SLP converged in only 4 design iterations.
Remember that if one has enough processors, each
design iteration of both the SLP and the DOE-based
algorithms can be performed in the equivalent time of a
single function evaluation. This means that if one has
50 processors, this 10 design variable problem could be
solved in the equivalent time of only 7 function evalua-
tions. In contrast, using the parallel SLP algorithm
starting from the original staring point would require 24
design iterations.

Discussion

Based on our initial investigation, the proposed
DOE-based algorithm is capable of efficiently using
large numbers of processors in systematically exploring
the design space. However, the DOE-based algorithm
is slow to converge on the optimum design point.
Combining the DOE-based algorithm with and the
improved parallel SLP algorithm seems to be a prom-
ising alternative. This two-step process is still not fully
explored and future work would have to investigate
when to switch from the DOE-based algorithm to the
SLP algorithm. Additionally, the DOE-based algorithm
does not only provide a reasonable starting point for the
SLP algorithm, but also reduces the bounds about this
point. Future work will have to investigate the most
efficient use of these reduced bounds in the SLP algo-
rithm.

CONCLUSION

Our results showed a significant decrease in the
overall time required to perform general-purpose opti-
mization using existing gradient-based algorithms with
the finite difference gradient calculations performed in
parallel. We found that the SLP algorithm had the
highest parallel efficiency among the algorithms that
we considered. If one has as many processors as the
number of design variables plus one, each design itera-

8

(¢)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

tion may be performed in the time of a single function
evaluation. This high parallel efficiency of the SLP
algorithm is due to the fact that no one-dimensional
search calculations are required.

Our results also indicate that when using large
number of processors and a numerical simulation that
produces large amounts of disk I/O as an analysis, a
shared memory machine like the Origin 2000 may not
be the best choice. For the course grained implementa-
tion used here, with little inter-processor communica-
tion and substantial disk I/O, it may be better to utilize a
cluster of workstations, each with its own processor,
memory and hard disk.

The paper also points out that the gain in effi-
ciency by parallelizing existing gradient-based algo-
rithms is limited by the number of independent design
variables of the problem under consideration. For large
numbers of processors new algorithms are required. In
these algorithms the efficient use of large numbers of
processors is more important that the total number of
function evaluations. We introduced a DOE-based
algorithm that, especially when used in a two-step pro-
cess with a parallel gradient-based algorithm, gave very
encouraging results. Using the two-step approach and
50 processors, we were able to solve a ten design vari-
able problem in the equivalent time of 7 function
evaluations. However, this DOE-based algorithm is
just an initial proposal and additional future work is
required.

ACKNOWLEDGEMENT

This work was sponsored in part by NASA Con-
tract NAS1-98151.

REFERENCES

[1] VisualDOC Design Optimization Software, Version
1.0 Reference Manual, Vanderplaats Research &

Development, Inc., Colorado Springs, CO, 1998.

{2] Venter, G, and Watson, B.C., “Exploiting Parallelism
in General Purpose Optimization”, Proceedings of the
6™ International Conference on Applications of High-
Performance Computers in Engineering, Maui,

Hawaii, January 26-28, 2000.

Rogers, J.L., Young, K.C. and Barthelemy, I.M.,
“Distributed Computer System Enhances Productivity
for SRB Joint Optimization”, 28" AIAA/ASME/
ASCE/AHS Structures, Structural Dynamics and
Materials Conference, Monterey, CA, pp. 596-600,
April 6-8, 1987.

Sikiotis, E.S., and Saouma, V.E., “Parallel Structural
Optimization on a Network of Computer
Workstations”, Computers & Structures, Vol. 29,
No. 1 pp. 141-150, 1988.

(3]

(4]

American Institute of Aeronautics and Astronautics



(¢)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

[5] El-Sayed, M.E.M., and Hsiung, C.K., “Design
Optimization with Parallel Sensitivity Analysis on the
CRAY X-MP”, Structural Optimization, Vol. 3, pp.
247-251, 1991.

[6] Watson, B.C., and Noor, A.K., “Sensitivity Analysis
for Large-Deflection and Postbuckling Responses on
Distributed-Memory Computers”, Computer Methods
in Applied Mechanics and Engineering, Vol. 129, pp.
393-409, 1996.

71 Smith, S.L., and Schnabel, R.B., “Centralized and
Distributed Dynamic Scheduling for Adaptive,
Parallel  Algorithms”,  Unstructured  Scientific
Computation on Scalable Multiprocessors, eds. P.
Mehrotra, J. Saltz, and R. Voigt, MIT Press,
Cambridge, MA, pp.301-322, 1992.

[8] GENESIS Structural Optimization Software, Version
5.0 User Manual, VMA Engineering, Colorado
Springs, CO, 1998.

9] Audze, P. and Eglais, V., “New Approach for
Planning out of Experiments,” Problems of Dynamics
and Strengths, Vol. 35, 1977, pp. 104-107, Riga,
Zinatne Publishing House (in Russian).

[10] Owen, A.B., “Orthogonal Arrays for Computer
Experiments, Integration and Visualization,” Statistica
Sinica, 1992, Vol. 2, pp. 439-452.

9
American Institute of Aeronautics and Astronautics



	Main Menu
	Table of Contents
	Table of Authors
	Paper

