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ABSTRACT

This paper describes the implementation of bi-
furcation buckling finite element analysis and opti-
mization in the commercial program GENESIS. For
optimization, approximation concepts are used to
reduce the number of full system analyses. The
buckling responses are fully integrated so that in the
optimization problem they can be combined with
other existing analysis responses resulting from stat-
ics, dynamics and/or heat transfer. In addition, these
responses can be combined with existing geometric
and/or user responses. Example problems using buck-
ling responses are described.

INTRODUCTION

Designers use buckling analysis to insure the
stability of their designs. Bifurcation buckling analy-
sis consists in finding the critical load factor that mul-
tiplies the applied loading such that for loading
greater than that factor, there are muitiple solutions
(i.e., the point at which the load-displacement path
bifurcates). Buckling analysis is a well-established
discipline and many papers and books on the theory
can be found. See, for example, references 1 and 2.
In this paper, the discussion of theory is limited to the
basic equations, and more emphasis is placed on im-
plementation issues. This work explains the imple-
mentation of linear finite element analysis to solve
the buckling problem.

The optimization problem in GENESIS is solved
using the approximation concepts approach’. In this
approach, an approximate analysis model is created
and optimized at each design cycle. The design solu-
tion of the approximate optimization is then used to
update the full model, and a full system analysis is
performed to create the next approximate analysis
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model. The sequence of design cycles continues until
the approximate optimum design converges to the
actual optimum design. When compared to optimiz-
ing using full model structural analyses, the approxi-
mation concepts approach typically reduces the num-
ber of analyses required to find an optimum design
by an order of magnitude.

Approximation concepts for traditional structural
optimization (sizing and shape) were introduced by
Schmit et al., in the mid-seventies *°. In the eighties
and early nineties, these concepts were refined to
improve the quality of approximations®’. In the late
nineties these refined concepts were used to solve the
topology optimization problem®.

This paper discusses the application of these re-
fined approximations to the buckling responses. This
work also discusses the optimization capabilities
added to GENESIS related to bucking analysis and
other existing optimization capabilities that can be
used simultaneously with buckling responses.

BUCKLING ANALYSIS

The type of buckling analysis implemented cor-
responds to bifurcation analysis. The following gov-
erning equation is used:

(KI{o3=MK]{¢} 6y

where [K] is the system stiffness matrix, [K,] is the
system geometric stiffness matrix, {¢} the buckling
mode shape and A is the critical load factor.

The stiffness and geometric stiffness matrices,
[K] and [K,], are generated internally by GENESIS.
The eigenvalues and eigenvectors, A and {¢}, are
solved for by GENESIS using either the subspace
iteration or the Lanczos eigen solvers.
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FINITE ELEMENTS

In this work the geometric stiffness matrices for
the rods, bars, uniform and non-uniform beams, shear
panels, membranes, shells, composites, and 3-D solid
elastic elements were implemented. The geometric
stiffness matrices for most of these elements were
derived from the following general equation:
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where, Uy is the element nonlinear strain energy of

the buckling state, wy, oy and o, are the rotations, O,
Oy, Oy, Txy, Tyz and T are the element stresses.

The element stresses and rotations are calculated
from nodal displacements using the following equa-
tions:

{o}=[D] [B{u} (3)

{o}=(R] {0} @
where [D] is the stress-strain constitutive matrix, [B]
is the strain-displacement matrix, {u} is the
displacement vector resulting from the applied
static loading of interest, [R] is the rotation-
displacement matrix, and {ﬁ } is the displace-
ment vector for the potential buckled configu-

ration.

The nodal displacements are calculated from the
governing equation of the static loadcase for which
the stability analysis is being performed.

(K] {u} ={P} &)
where {P} is the consistent load vector.

In this work the contributions of the rigid ele-
ments, RROD, RBAR and RBE2, were calculated by
recovering the force in each rigid link, and then treat-
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ing each rigid link as a rod element for the purpose of
geometric stiffness calculation.

The system geometric stiffness matrix is ob-
tained by assembling the element geometric stiffness
matrices.

All other elements available in GENESIS such
as the user supplied elements (GENEL) or interpola-
tion elements (RBE3) can be used, but they do not
contribute to the system geometric stiffhess matrix,

THE OPTIMIZATION PROBLEM
The optimization problem can be stated as:

Min F(x;,X5,...,X,)
X;

such that :
g;(X5X55005%,)<0; j=1Lm

xil SXi .<_X1'u; 1=1,n

where F is the objective function, g; are the con-
straints, x; are the design variables and x; and
X; the side constraints.

DESIGN VARIABLES

Three types of optimization are currently imple-
mented in the GENESIS program: Sizing, shape and
topology. Simultaneous sizing and shape optimiza-
tion can be handled, while topology optimization is
performed separately.

For this work, buckling responses were imple-
mented for sizing and shape optimization problems.

An important feature of GENESIS is that there
are no built-in restrictions on the number of design
variables that can be used. For shape and sizing op-
timization, several hundred variables are commonly
used, while for topology, there are typically tens of
thousands of variables.

Sizing Optimization

In sizing optimization, the element cross-
sectional dimensions are typically used as design
variables. To link the design variables to the proper-
ties of the finite elements, the user creates equations
that relate design variables to properties. For exam-
ple:

Iy,=U12BH (6)
A=BH @
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Shape Optimization

In shape optimization, scale factors of perturba-
tion vectors are the design variables’. The perturba-
tion vectors are input directly or by providing basis
vectors. A perturbation vector is the vectorial differ-
ence between a basis vector and the original grid lo-
cations (see Figure 1). Basis or perturbation vectors
can be automatically created in GENESIS *°.

DVAR=1‘01£ 2.0 3.0 40 5.0
BASIS Voro)ol
VECTOR

\_’. ] ll

-l

[]
! 7

’ -
1 e }
4 1o
STy

t 7, ,’

v ! . L

R FINAL SHAPE

/7
PAd
-

INITIAL SHAPE

Figure 1. A shape optimization basis vector.

RESPONSES

Responses are quantities that are calculated by
the program and are functions of the design variables.
They can be used as the objective function or as con-
straints of the optimization problem. In bucking op-
timization, the key response is the buckling load fac-
tor.

Other existing responses that can be selected si-
multaneously with the bucking responses are:

Finite Element Responses

Almost every finite element response calculated
for analysis can be used in optimization. These re-
sponses are displacement; velocity; acceleration;
stress; strain; force; strain energy; natural vibration
frequency; natural mode shape component; and tem-
perature.

Geometric Responses

Responses that are functions of grid locations,
such as volume, area, length, angles, distances, mo-
ment of inertias and center of gravity.

Equation Responses

The user can specify nonlinear equations mixing
finite element responses with design variables, grid
locations and geometric responses to create their own
responses.

3

Subroutine Responses

User-written subroutines can be linked with
GENESIS to mix finite element responses with de-
sign variables, grid locations and geometric responses
to create special responses.

External Responses

An external program can be used to generate re-
sponses from other analysis programs for complete
multidisciplinary optimization.

OPTIMIZATION

Objective Function

Any of the considered responses can be used as
the objective function for minimization or maximiza-
tion. Because the cost of a structural component is
often proportional to its mass, the typical objective in
structural optimization is to minimize the mass.

Constraints

Any of the considered responses can be con-
strained to user-specified limits. Typically, con-
straints are applied on stresses or deflections. In
buckling optimization, the critical load factor is usu-
ally constrained to be greater than a safety factor.

Optimizer

The user can select the well-established DOT
optimizer'' or a new optimizer, BIGDOT, which is
being developed by Gary N. Vanderplaats. BIGDOT
is designed for very large scale optimization prob-
lems, and should be selected when there are large
numbers of design variables.

APPROXIMATION CONCEPTS

In the approximation concepts approach, re-
sponses are modeled using approximation functions.
Rather than approximating the responses directly,
intermediate responses and intermediate design vari-
ables are used. This allows the approximation to
capture more of the nonlinearities of the responses,
which can then be used over a greater range of design
variables. In addition, a constraint screening process
is used to limit the amount of work required in the
sensitivity module.

American Institute of Aeronautics and Astronautics
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Intermediate Design Variables

Sizing variables:

For most elements such as rods, bars, shear pan-
els, and shell GENESIS uses the element properties
as intermediate design variable. For laminated com-
posite elements, two options are available: (a) the
thicknesses and angles are used directly; (b) the terms
of the constitutive matrix are used as intermediate
design variables'>">.

Shape variables:

In shape optimization, the shape design variables
are used directly.

Intermediate Responses

Intermediate response are used in GENESIS
whenever is possible to improve the quality of the
approximations. In this work, the Rayleigh quotient
approximation (RQA) method is used to approximate
the buckling load factor. This approximation was
presented by Canfield’ and consists of using the fol-
lowing expression:

U
A= ®

g

where U represents the linear modal strain energy
and Uj the nonlinear strain energy of the buck-
led state.

Canfield proposed to approximate U and U,
separately and calculate the approximate load factor
from these values.

In this work the RQA method was chosen be-
cause its generality (it can be used for any type of
element) and because with it, multimodal problems
(repeated eigenvalues) can be solved’. The ability to
solve for multimodal problem could be fundamental
because as Olhoff and Rasmussen showed, the cor-
rect optimal design of columns is bimodal'*.

Constraint Screening

Constraint screening is a technique to reduce the
computational time. The idea is to disregard, in a
given design cycle, all constraints that are far from
being violated. In GENESIS this technique is used
extensively. In this work, this technique has been
applied to reduce the number of buckling load factors
constraints.

SENSITIVITY ANALYSIS

The sensitivity of the required intermediate re-
sponses with respect to the intermediate design vari-
ables are calculated using the following relationships:

U=26"Ks ©
Uy =5 07Ky (10)
bt an

G

i

In equations (11-12), the sensitivities of the
mode shape are ignored. This approximation is made
because it greatly reduces the computational time
without significant lose in accuracy.

The geometric stiffness matrix, K,, is in general
a function of both the design variables, x, and the
displacements, u. Therefore, the derivative of [K,] is
calculated using the chain rule as follows:

diK,] _0lKg] X 0[K,] ou;

(13)

In addition, the sensitivities of the displacements
are calculated solving the following equations:.

SEOS {%x‘{l’} e {u}} (14)

1

APPROXIMATE PROBLEM

Response approximations

In GENESIS, most response approximations use
the conservative approximation approach first devel-
oped by Starnes and Haftka'® and later refined by
Fleury and Braibant'®:

G(X)=G(X o)+ hi(x;) (15)
Where,
SG (x,- —xm) if xi—a-G—‘ >0
Xilx- ilx2
M= A oG o
o (g e
axi X=X, Xi Xoi i X=X,
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G(X) is the function being approximated.

X, is the vector of intermediate design variables
where the approximation is based.

x; is the i® intermediate design variable

Xoi is the base value of the i intermediate design
variable

The modal strain energy and modal nonlinear
strain energy are calculated using this expression as
intermediate responses to calculate the buckling load
factor.

Sensitivities of response approximation

The optimizers require the calculation of the de-
rivatives of the actual responses with respect to the
actual design variables. That calculation is divided
into four parts: a) the partial derivatives of the actual
responses with respect to the intermediate responses;
b) the partial derivatives of the intermediate re-
sponses with respect to the intermediate design vari-
ables; c) the partial derivative of the actual response
with respect to the intermediate design variable; and
d) the derivative of the intermediate design variable
with respect to the actual design variables.

Using the RQA method, the derivatives of the
actual response with respect to the intermediate re-
sponses are given by:

oA 1
— = 16
U U, (10
oA U
=~ e amn
au, U§

These derivatives are calculated analytically us-
ing the above equation and are updated each iteration,
of the approximate problem phase.

The partial derivatives of the intermediate re-
sponses with respect to the intermediate design vari-
ables are calculated once, per design cycle, in the
sensitivity module using Eq. (11-12), and are not
changed during the approximate optimization phase.

With the RQA method, the partial derivatives of
the actual response with respect to the intermediate
design variables are zero because the Rayleigh quo-
tient is not an explicit function of the intermediate
design variables.

The partial derivatives of the intermediate design
variables with respect to the actual design variables
are calculated using the explicit relationships be-
tween the intermediate design variables and the ac-
tual design variables. For example, for a rectangular
beam with actual designable variables H (height)

and B (width), the following derivatives are calcu-
lated for the intermediate design variable, Iy,

ol B3
T s
ol BH?
M4 )

These derivatives are calculated using the finite
difference method, and they are updated each itera-
tion during the approximate problem phase.

The chain rule of partial differentiation is used to
combine these four parts to calculate the approximate
derivatives of the actual responses with respect the
actual design variables.

Move Limits

The use of approximation techniques requires
limiting how much the design variables can move in
each design cycle. Therefore, temporary bounds on
the design variables are applied. These temporary
bounds are constructed using the following relation-
ships:

Xp; = X; -max(DELX -[X;, DXMIN)  (20)

Xy; = X; +max(DELX - [X;, DXMIN) 21

Where: Xy; and Xy; are the temporary bounds for the
design variable, X, in the current design cycle.
DELX is typically 0.5 and DXMIN 0.1 in
shape and sizing optimization.

If the temporary bounds lie outside the real
bounds, then the real bounds are used.

GENESIS also uses automatic move limits ad-
justments to improve the performance of the pro-
gram'’,

CONVERGENCE CRITERIA

The optimization process is terminated when one
of the following three criteria is satisfied:

Soft convergence

The optimization process is stopped if the ap-
proximate optimization problem did not change the
design variables. This type of termination is termed
soft convergence.

Hard convergence

The optimization process is stopped if the objec-
tive function is not changing and there are no violated
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constraints. This type of termination is termed hard
convergence.

Maximum number of iterations

In shape and sizing optimization using the ap-
proximation concepts described, takes typically 10
design cycles to get close to the final results. So even
if the previous criteria are not satisfied the optimiza-
tion is stopped.

PROGRAM CHART

Figure 2 shows the flowchart of GENESIS.
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Figure 2. Optimization flowchart.

ADDITIONAL CONSIDERATIONS

Optimizer

For shape optimization in GENESIS, the user may
choose to use mesh-smoothing'®. This option reduces
the distortions of the mesh and allows for greater
shape changes without re-meshing.

EXAMPLE RESULTS
TOWER OPTIMIZATION

The first example corresponds to a tower struc-
ture, which was previously solved by Khot'®. The
initial area of all rod members is 2.03 in’. The
Young’s modulus (E) is 1.0E7 psi and the weight
density is 0.1 Ibs/in®

Figure 3. shows the finite element model that
consists on 41 truss members and 22 grids. A static
load consisting on two points loads of 5000 1bs each
are applied on the top of the structure.

P P

—
-

100°

P EC V-4

7
Py

3

21

Figure 3. Tower model.

The objective of the problem is to minimize the
mass of the tower subject to buckling constraints. The
first buckling load factor is constrained to be above
1.0, while the second is constrained to be above 1.1.
Twenty one design variables are used to design the
areas of the 41 truss members, so that the structure
remains symmetric.

Figures 4 show the buckling modes of the origi-
nal configuration. These modes matches those pre-
sented in Ref, 19.

American Institute of Aeronautics and Astronautics
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Figure 4. Buckling mode shapes.

GENESIS reduced the mass by 38% and con-
verged with soft convergence after 5 design cycles.
That compares well with results in Ref. 19, where the
mass reduction achieved was similar. It is interesting
to note that in Ref. 19, this problem was solved using
optimality criteria. The above results were obtained
using only defaults parameters. Afier changing the
GMAX parameter that controls the tolerance for con-
straint violations to 0.05%, GENESIS converged to a
similar answer in 4 design cycles.

Table 1
Weight Design History of Truss Tower

DESIGN | REF.19 | REF 19 GENESIS GENESIS
CYCLE | EQ.21 | EQ24 | DEFAULT | GMAX=0.05

0 089.82 | 989.82 989.82 989.82

1 689.18 | 775.22 712.20 712.20

2 616.14 | 664.36 644.88 628.82

3 608.56 | 625.00 621.42 610.01

4 608.54 | 613.89 611.46 608.94

5 608.31 | 610.12 609.967

6 608.23 | 608.72

7 608.29

.8 608.23

7
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OPTIMIZATION OF ELASTIC BEAM
CONNECTED TO A RIGID BAR

The second example corresponds to a elastic
beam of length 100 in. pinned in one end and built-in
at the other to a rigid bar of length 25 in. The rigid
bar is connected to a frictionless pin on the right end
of the structure. The elastic beam has an initial uni-
form circular cross section, with a diameter of 1 in.
The Young’s modulus (E) is 1.0E7 psi and the den-
sity is 2.589E-4 (12 slug/in®). A static load of 50 Ibs
is applied horizontally on the left end of the structure.

Figure 5 shows the finite element model that
consists on 20 bar elements, 1 RBAR element and 22
grids.

< 100" 25"

Figure 5. Beam model.

The objective of the problem is to minimize the
mass of the elastic beam, while preventing it from
buckling. The first buckling Joad is constrained to be
above 1.1 to allow for a 10% factor of safety.

Two sets of design variables are selected. In the
first set, one design variable controls the diameter of
the 20 bar elements. The second set of design vari-
ables contains 20 variables that control the diameter
of each bar element.

Figures 6 show the first buckling mode in the
original configuration.

e N

Figure 6. Buckling mode shape.

In is interesting to note that this mode shows that
the rigid element also participates in the mode. This
is because GENESIS does not ignore the geometric
stiffness matrix of the RBAR ¢lement.

The solution for case 1 is presented on the fol-
lowing table.

American Institute of Aeronautics and Astronautics
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Table 2
Mass Design History of Elastic Beam connected to
Rigid bar - Case 1

CYLINDRICAL TUBE OPTIMIZATION

The theoretical answer for the case of uniform

diameter is:
2 0.25
b1

where k is the solution of the following equation:

L
kL= —Etan(kL) (23)

Using Newton’s method to solve for equation
(23), kL is calculated as 2.5704. Evaluating the equa-
tion (22) using A, =1.1, the analytical diameter is
found to be 0.6417. That verifies the GENESIS an-
swer of 0.6422.

The solution for case 2 is presented on the fol-
lowing table.

Table 3
Mass Design History of Elastic Beam connected to
Rigid bar - Case 2

DESIGN MASS BUCKLING LOAD
CYCLE | 10E-3*(12slugfin®) FACTOR

0 20.33 6.49

1 10.16 1.62

2 8.17 1.21

3 7.68 1.11

4 7.66 1.10

5 7.66 1.10

7 7.66 1.10

For the one variable case, GENESIS reduced the
mass by 59% and converged with soft convergence
after 4 design cycles. For the 20 design variable case,
GENESIS reduced the mass by 62% and converged
with soft convergence after 7 design cycles. In both
cases the constraint was satisfied and the load factor
was reduced by 83%. It is interesting to note that this
problem has repeated eigenvalues due to the symme-
try of the section and the RQA method did not have
problems with them.

The final example is a thin shell cylindrical tube

DESIGN | DIAMETER | MASS | BUCKLING ;V.lth Stlgferl;ed cut;ut; subj e;:ted to am:g (l:orrflp;esm%n.
CYCLE i 10E-3* LOAD igure 7 shows the finite clement model of the tube.
(12 slug) FACTOR The tube was divided into ten bands along its length.

0 1.0000 20.33 6.49 The thickness of the shell elements in each band was

1 0.7070 10.16 1.62 allowed to vary independently. The objective was to

2 0.6002 8.86 1.23 maximize the lowest buckling load factor subject to a

3 0.6439 8.43 1.12 constraint on the total mass. The beta method was

4 0.6422 8.39 1.10 used to allow the optimizer to consider the lowest 15

modes during the approximate optimization. Ifthis is
not done, then mode switching from cycle to cycle
creates severe oscillations during the design process.
The mass constraint was violated by 15% in the ini-
tial configuration. The optimization was able to sat-
isfy the mass constraint, while increasing the mini-
mum buckling load factor by 10%, converging in 16
design cycles.
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Figure 7. Cylinder model with stiffened cutouts.

Figure 8 shows the buckling mode shape of the low-
est buckling load factor of the initial configuration.
Figure 9 shows the first buckling mode shape of the
optimized configuration.
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e,

Figure 8. First buckling mode shape of the initial
configuration.

Figure 9. First buckling mode shape of the optimized
configuration.

CONCLUSIONS

Buckling finite element analysis and optimiza-
tion was integrated into GENESIS. The paper dis-
cusses the equations used to build the elemental
geometric stiffness matrices and the use of approxi-
mation concepts to efficiently solve the buckling op-
timization problem. Examples that illustrate the new
buckling capabilities are presented. The implemented
Rayleigh quotient approximation method is also dis-
cussed. The implementation performs well, and for
most problems convergence can be expected to be
within ten design cycles. Exceptions could be prob-

9
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lems with multiple repeated eigenvalues, where the
convergence could be slower, as in the third example.
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