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ABSTRACT

A simple approach to stacking sequence optimization
of composite laminates is presented. The original
stacking sequence problem is solved using an
equivalent sizing optimization problem with
continuous design variables.

INTRODUCTION

The composite laminate design process typically
involves optimization of the following four
parameters:

1. Ply (or lamina) material,
2. Ply thickness,
3. Ply orientation, and
4. Stacking (or lay-up) sequence.

The true optimization of a composite laminate,
simultaneously considering the coupling effects of the
four design parameters mentioned above, is a
mathematical challenge in structural optimization.

The optimization of ply material is, perhaps, the most
complex of all because of the inherent possibility of
designing a hybrid laminate consisting of two or more
material types. Recent work by Grosset,
Venkataraman and Haftka1 is an attempt to address

the issue of multi-material optimization for hybrid
composite laminates.

Numerous analytical techniques are available to
optimize the ply thickness and orientation of a
composite laminate. While majority of the
commercially available structural optimization codes
treat ply thickness and orientation as continuous
design variables, GENESIS2 has been recently
enhanced to handle them as discrete and/or
continuous design variables during the laminate
design process.

Once ply material, thicknesses and orientations in the
laminate are known, a certain sequence of layers,
known as laminate lay-up or stacking sequence, is
assumed. However, this assumed laminate stacking
sequence might not produce the optimal laminate
design for a composite structure. This is especially
true when the response of the laminated structure is
NOT dominated by its membrane properties.

One straightforward approach to stacking sequence
optimization may be to evaluate all the candidate
designs after material, thickness and orientation
optimization has been performed, and then pick the
best one. This approach, however, is computationally
intensive for most practical applications, because the
total number of possibilities in a laminate stacking
sequence design is normally huge. For example, if a
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composite laminate has nl number of layers, the
number of possible candidate designs is (nl!). Thus, if
there is a composite laminate with 6 layers, the
number of possible candidate designs is 720 (6!).

This work attempts to address the problem of
stacking sequence optimization independently, i.e., by
separating it from the optimization of ply material,
thickness and orientation. The proposed approach is
computationally efficient to perform laminate
stacking sequence optimization for large composite
structures using the current optimization capabilities
of the GENESIS program3.

Previous Research

Researchers in the past have tried to address the
stacking sequence optimization issues. Haftka and
Walsh4 used an integer-programming approach to
perform stacking sequence optimization for buckling
of laminated plates. It was formulated as a linear
problem by using ply-identity design variables, which
may have values of either 0 or 1. Once it was
designed as linear integer design optimization
problem, it would be solved using widely available
linear integer optimization software. Here the
problem chosen was a very specific one which they
could formulate as a linear problem. If both thickness
and orientation of composite layers are used as design
variables, the problem is no longer a linear one but
involves nonlinear formulations.  Also the software
that was used to solve the linear programming
formulation used branch-and-bound method, which
cannot handle a large number of design variables.

Nagendra, Haftka and Gürdal5 used an approach
similar to the one described in reference4 to solve
the stacking sequence optimization of simply
supported laminates with stability and strain
constraints.  Here the buckling constraints are linear
in terms of the ply-identity variables, but strains are
nonlinear functions of ply-identity variables. A
linear approximation was developed for the strains
so that problem could be solved using a linear
programming software.

Riche and Haftka6 used a genetic algorithm to
optimize the stacking sequence of a composite
laminate for buckling load maximization. While using
genetic algorithms for optimization, it is very
important to have the right values of parameters used
in the optimization. They studied various genetic
parameters such as population size, probability of
mutation and probability of crossover using numerical

experiments.  The use of genetic algorithm produced
several near optimal designs.

Riche and Haftka7 further improved the algorithm
discussed in reference6 by incorporating knowledge
of the physics of the problem into the genetic
algorithm. Improved selection, mutation, and
permutation operators were proposed. These
improvements reduced the cost of genetic search by
more than 50%.

Todoroki and Haftka 8, 9 used a genetic algorithm to
obtain stacking sequence of the laminates that had the
set of lamination parameters closest to a set of target
parameters. The study was based on a constrained
combinatorial optimization formulation. Constraints
were enforced in genetic optimization by introducing
a new repair strategy.  The relationship between the
reliability of the genetic algorithm and the probability
of repair was investigated.  It was concluded that the
repair strategy should always be used with composite
optimization that usually includes 450 plies.

In general, genetic algorithms are effective in
producing global optimum solutions when only a few
design variables are involved, and analyses are not so
expensive. The kind of problems that we hope to deal
with will involve a larger number of discrete design
variables and computationally intensive finite element
analyses. Although Genetic Algorithms are effective
in producing near global optimum solutions, it may
not be very effective to optimize the problems that
involve a large number of design variables and
expensive analyses.

A NEW APPROACH

The proposed approach to perform the laminate
stacking sequence optimization presented here is an
indirect approach. This approach consists in changing
the stacking sequence problem into an equivalent
sizing optimization problem.

This approach uses current sizing optimization
capabilities in GENESIS. This approach is meant to
be used along with the existing GENESIS input data.
The software itself is not changed.  This approach
allows all existing analysis capabilities in GENESIS
version 7.0 to be used simultaneously with the
stacking sequence optimization. Among these
capabilities are the optimization of natural
frequencies, buckling load factors and stress fields.
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The proposed approach consists of four steps. The
first three steps are for setting-up the equivalent
sizing optimization problem. The last step is used to
interpret the results to obtain the optimized stacking
sequence. These four steps are described next.

STEP1: Replacing Analysis Data

The first step of the proposed approach is to replace
the initial N layers with N2 layers. The first N layers
have the same orientation as the initial design but
their thicknesses are divided by the total number of
layers. Then, this set is repeated (N-1) times as shown
in Figure 1.

STEP 2: Setting the Optimization Problem

Step 2.1: Defining the design variables

For each composite with N layers, N2 design
variables are created. Each design variable will have
an initial value of (1.0/N) (1/3) with a lower bound of
0.0 and upper bound of 1.0.

Step 2.2: Linking design variables to the thickness

Each thickness will be related to a unique design
variable using the following relationship:

 
3

ijiij XTT = where i, j=1, N                    (1)

Other relationships are also possible. The key here is
that when Xij is 0.0, Tij is 0.0, and when Xij is 1.0,
Tij=Ti. This relationship is similar to the power rule
used in topology optimization. The cubic power is
arbitrary, but experience has shown that it works well
in many problems studied by the authors.

Step 2.3 Linking the design variables to enforce
design variable values to zeros or ones.

To the original optimization problem, 2N constraints
are added per laminated composite. These constraints
link layers with the same orientations together. This
linking is done in such a way that at the end of the
optimization, one of the design variables
corresponding to each orientation will be driven to
1.0 and the rest (N-1) to zero. These constraints are
shown next:

TolX
N

j
ij +≤∑ 0.13 and                         (2)

TolX
N

j
ij −≥∑ 0.13 i=1,N                 (3)

In the above constraints, TOL is a small tolerance to
help the optimizer converge at a faster speed. A value
of 0.02 has produced good results. A value of 0.0, or
one very close to 0.0 (0.001) my lead to sub-optimal
solutions. The power 3 in Equation 3 is arbitrary, but
the experience has shown that it works well in most
cases.

T11 = T1/N Orientation 1
T21 = T2/N Orientation 2
T31 = T3/N Orientation 3

T1 Orientation 1

T41= T4/N Orientation 4
T12 = T1/N Orientation 1
T22 = T2/N Orientation 2
T32 = T3/N Orientation 3

T2 Orientation 2

T42= T4/N Orientation 4
T13 = T1/N Orientation 1
T22  = T2/N Orientation 2
T33   = T3/N Orientation 3

T3 Orientation 3

T43  = T4/N Orientation 4
T14 = T1/N Orientation 1
T24 = T2/N Orientation 2
T34  = T3/N Orientation 3

T4 Orientation 4

T44 = T4/N Orientation 4
Original Initial Design Proposed Initial Design

Figure 1: Original and Proposed Layer Setup
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STEP 3: Optimization

The additional design variables and constraints are
added to the original problem, and the problem is
optimized using GENESIS.

STEP 4: Interpreting the Results

At the end of this process, if the added constraints are
not violated, N design variables should have a
numerical values approximately equal to 1.0, and the

rests will have numerical values of zeros or nearly
zeros.

A value of 1.0 in Xij means that the layer that
originally was in location i should be stacked in
location j. In other words, the values of 1.0 indicate
the optimal stacking sequences. This can be
exemplified in a simple case: Assume that X12=1.0,
X21=1.0, X34=1.0 and X43 =1.0, the results would then
be as shown in Figure 2.   

T11 = 0.0 Orientation 1
T21 = T2 Orientation 2
T31 = 0.0 Orientation 3
T41= 0.0 Orientation 4

T2 Orientation 2

T12 = T1 Orientation 1
T22 = 0.0 Orientation 2
T32 = 0.0 Orientation 3
T42 = 0.0 Orientation 4

T1 Orientation 1

T13  = 0.0 Orientation 1
T23  = 0.0 Orientation 2
T33   = 0.0 Orientation 3
T43  = T4 Orientation 4

T4 Orientation 4

T14 = 0.0 Orientation 1
T24 = 0.0 Orientation 2
T34  = T3 Orientation 3
T44 = 0.0 Orientation 4

T3 Orientation 3

Optimized Stacking Sequence Final Design

Figure 2: Optimized Stacking Sequence and Final Design

SYMMETRIC LAYOUTS

If the layout is symmetric, we will need to create only
(N/2)**2 design variables, and  (2N)/2 additional
constraints.

Examples of Composite Stacking Sequence
Optimization

Three optimization problems of variable complexities
are presented to illustrate the use of the proposed
approach.

1. Frequencies Optimization of a laminated plate

The first problem aims at maximizing the
fundamental torsion frequency of a 16-ply balanced
symmetric laminated plate while requiring the
fundamental bending frequency to be at least 100 Hz.

The plate is 60 mm by 60 mm. Each layer is 0.15
mm. The material properties are as follows:

E1=168.2 GPa, E2=1.15 GPa, V12=0.3,
G12=0.601 GPa, G1Z=0.601 GPa, G2Z=0.43 GPa,
Density= 0.15E-3 Kg/mm3.

The plate was modeled using a 3,750 degrees of
freedom finite element mesh (625 grids, 576 QUAD4
elements and 1 PCOMP property).
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The initial laminate design of
s)]30/30/75/75/90/0[ 22 −−  produced ωT = 62.41

Hz, and ωB = 176.62 Hz.   

The equivalent sizing problem has 64*2 [(16/2)2*2]
layers and hence 64 design variables. There are 16
[(16/2)*2] added constraints. This initial proposed
design 8 s)]30/30/75/75/90/0[ 22 −− produced the
following results: ωT = 82.17 Hz, and ωB = 176.26
Hz.

The equivalent sizing problem was solved using two
optimizers available in GENESIS: BIGDOT and
DOT.

Using BIGDOT, the optimization converged in 12
design cycles overcoming an initial maximum
constraint violation of 292.2%. The maximum
constraint violation came from the added constraints
described on Equations (2) and (3). The optimization
run produced the following design: ωT = 153.08 Hz,
and ωB = 103.37 Hz.

Using step 4, the results are interpreted as a
composite with the following stacking sequence:

s22 ]0/90/75/75/30[ −± . Using this interpreted
stacking sequence, GENESIS produced the following
results: ωT = 153.46 Hz, and ωB = 103.41 Hz. These
results are very similar to the optimized ones because
the design variables were very close to zeros or ones.

Table 1: Results using BIGDOT Optimizer

Design Type
Number

of
Layers

ωT ωB

Original
Initial Design 8*2 62.41 176.62

Proposed
Initial Design 64*2 82.17 176.26

Optimized
Proposed Design 64*2 153.08 103.37

Final Design 8*2 153.46 103.41

The results with BIGDOT optimizer are shown on
Table 1. It shows that the torsional frequency of the
original initial design was improved from 62.41 Hz to
153.46 Hz, an improvement of 146%.

Using DOT, the optimization converged in 5 design
cycles, also overcoming the initial maximum
constraint violation of 292.2%. The optimization run

in this case, produced the following results:  ωT =
150.13 Hz, and ωB = 103.63 Hz.

Again using step 4, the results are interpreted as a
composite with the following stacking sequence:

s22 ]90/0/75/75/30[ −± . Using this new interpreted
stacking sequence GENESIS produced the following
results: ωT = 150.13 Hz, and ωB = 103.63 Hz. These
results are almost identical to two significant digits, to
the optimized ones because all the design variables
were nearly zeros or ones.

Table 2: Results using DOT Optimizer

Design Type Number
of Layers ωT ωB

Original
Initial Design 8*2 62.41 176.62

Proposed
Initial Design 64*2 82.17 176.26

Optimized
Proposed
Design

64*2 150.13 103.63

Final Design 8*2 150.13 103.63

The results with DOT optimizer are shown in Table
2. It shows that the torsional frequency of the original
initial design was improved from 62.41 Hz to 150.13
Hz, an improvement of 141%.

A Comparison of the frequencies obtained by the two
optimizers shows that the BIGDOT optimizer
obtained a torsional frequency slightly better than
DOT.  Using BIGDOT, however, GENESIS took
more design cycles.  The two optimizers apparently
converged to two different local optimums.

It is noteworthy to mention here that a similar
problem was solved using ply angles as design
variables. In that problem, starting with an initial
laminate design of s]0/90/)45[( 222± , ωT = 108.2
Hz and ωB = 125.5 Hz, a final design with ply
orientated as s]0/90/75/30[ 22±±  was found. The
first two fundamental frequencies for this optimized
design were computed as ωT = 153.54 Hz and ωB =
103.50 Hz. It can be seen that the two frequencies of
interest obtained using discrete optimization are
almost identical to the one obtained with BIGDOT.
The only difference was the order in which the layers
with angles -75.0 and 75.0 were located.
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2. Vibration and torsion buckling of a laminated
cylinder

The second problem aims at maximizing the buckling
load factor λ  of a 12-ply balanced symmetric
laminated cylinder while requiring the fundamental
torsional frequency to be at least 100 Hz. Also, the
failure index at each layer at each element should be
below 0.75.

The height of the cylindrical structure is 53.4 mm. Its
diameter is 3.60 mm. Each layer thickness is 0.007
mm.

The material properties are as follows:

E1=168.2 GPa, E2=1.15 GPa, V12=0.3,
G12=0.601 GPa, G1Z=0.601 GPa, G2Z=0.43 GPa,
Density= 0.15E-3 Kg/mm3, XT=1.61 GPa,
XC= -1.43 GPa, YT=28.5 MPa, YC= -263.5  MPa, and
S=66.7 MPa.

The structure was modeled using a 15,561 degrees of
freedom finite element mesh (2594 grids, 2568
QUAD4 elements, 1 PCOMP property).

 The problem has three load cases. The first is a
frequency load case, the second is a static load case
and the third one is a buckling load case. On the static
load case, a moment of 30,000.0 N-mm was applied
on one end of the structure, the other end was
constrained.

An initial laminate design of s]65/30/20[ ±±±
produces λ = 0.55  and ωt = 150.63 Hz.

The equivalent sizing problem has 36*2 [(12/2)2*2]
layers and hence 36 design variables and 12
[(12/2)*2] added constraints.

The initial laminate design of 8* s]65/30/20[ ±±±
produced λ = 0.91 and ωt = 150.62 Hz. and. The
maximum failure index in the first design cycle was
0.65.

The optimization process, overcoming an initial
223.7% maximum constraint violation converged in 6
design cycles. The final results were λ = 1.31, and ω1
= 150.61 Hz.  The maximum failure index constraint
on the last design cycle was 0.66.

The initial maximum constraint violation came from
the added constraints described on Equations (2) and
(3). The DOT optimizer was used in this case.

Again, the results are interpreted as a composite with
the following stacking sequence:
 s]30/20/65[ ±±± .

Using this interpreted stacking sequence, a new
GENESIS analysis run produced the following
results: λ = 1.31 Hz and ωt = 150.61 Hz. These
results are almost identical to the optimized ones to
two significant digits, because all the design variables
were nearly zeros or ones, as required by the added
constraints.

Table 3:Results Using DOT Optimizer

Design Type
Number

of
Layers

λ ωT

Original
Initial Design 6*2 0.55 150.63

Proposed
Initial Design 36*2 0.91 150.62

Optimized
Proposed Design 36*2 1.31 150.61

Final Design 6*2 1.31 150.61

The original design, the initial proposed design, the
optimized proposed design and the final design are
shown on Table 3. It shows that the buckling load
factor improved from 0.55 to 1.31. This improvement
represents a 138% increase of the buckling load
factor, changing the condition of the structure from
unstable (λ≤ 1.0) to stable (λ>1.0) one. The stacking
sequence changes did not affect the first frequency or
the failure index responses considerably.

3. Bending stiffness of an all composite, floor-pan
structure

This problem aims at maximizing the bending
stiffness of an all composite floor-pan structure. This
problem corresponds to a typical unitized-body
automotive.  The floor-pan structure has been divided
into six zones, namely Z-1 to Z-6. Each zone has a
12-ply balanced symmetric composite layout.

The material is unidirectional carbon/epoxy prepreg
material.
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This problem was modeled with a 531,049 degrees of
freedom mesh (6 PCOMP data).

The equivalent sizing problem has 216*2
[6*(12/2)2*2] layers and hence 216 design variables
and 72 [6*(12/2)*2] added constraints.

The stacking sequence optimization problem
converged in 7 design cycles. A 4% gain was
obtained by the stacking sequence optimization.
Table 4 shows the results for three designs.

DESIGN-1 corresponds to a trial initial design.
DESIGN-2 corresponds to the optimization results

obtained in reference2, where the results were
obtained by treating ply angles as discrete design
variables.  DESIGN-3 shows the optimized stacking
sequences obtained starting from DESIGN-2.

These results show the strong influence of both the
ply orientations and stacking sequence on the
mechanical response of a large automotive composite
structure. An approximately 21% increase in bending
stiffness is achieved when using optimized lay-ups as
given in DESIGNS-2+ DESIGNS-3 rather than using
the quasi-isotropic lay-ups of unidirectional prepregs
in DESIGN-1.

Table 4: Lay-up Optimization of Six Zones of the Floor-pan to Achieve Bending Stiffness Target.

ZONE DESIGN-1 DESIGN-2 DESIGN-3

Z-1 s]45/90/0[ 22 ± s]0/60/45[ 2±± s]45/0/60[ 2 ±±

Z-2 s2]45/90/0[ ± s]0/60/15[ 4±± s]0/15/60[ 4±±

Z-3 s2]45/90/0[ ± s]0/45/30[ 4±± s]0/30/45/30[ 4−±

Z-4 s]45/90/0[ 22 ± s]0/60[ 4± s]0/60[ 4±

Z-5 s2]45/90/0[ ± s]0/30/75[ 4±± s]0/30/75[ 4±±

Z-6 s]45/90/0[ 22 ± s]15/90/30[ 2 ±± s]90/30/15/30[ 2−±

Bending Stiffness,
N/mm 831 968 1007

Remarks
Starting lay-ups for

DESIGN-2.
Orientations optimized;

Starting lay-ups for
DESIGN-3

Stacking sequence
optimized.

CONCLUDING  REMARKS

A new approach to solve stacking sequence
optimization problems was presented. The new
approach replaces the complexity of the stacking
sequence problem with a simpler and easier sizing
optimization problem.

The approach presented here is numerically very
efficient. The major reason for that efficiency is that
this approach inherits sizing optimization efficiencies.
On most problems, the approach converged in 12 or
less design cycles, just as typical sizing optimization
problems converges in GENESIS.

The research presented in this paper focused on
design variables associated to stacking sequence, so
the equations presented here only reflect that type of
variables. It should be noted that with small changes
on the presented equations, other design parameters
such as thicknesses and angles could be treated
simultaneously. For example, on Equation 1 the
constant term Ti could be changed to be a variable
and therefore, the thickness associated with
orientation i could have been designed. The
orientations themselves could have also been
designed simultaneously.
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The problems presented here used only one type of
material. However, there is nothing built–in to the
method to preclude the use of use multiple materials.
On the limit, each layer could have been designed
with a different material.

Equation 1 for updating the layer thicknesses, and
Equations 2 and 3 for forcing design variables to be
close to 0 or 1, could be studied further. Both sets of
equations worked well on the studied problems, but
other equivalent equations may be derived and made
use of. The TOL parameter in these equations turns
out to be important. A value of 0.02 produced good
results. Small values such as 0.001 caused the
optimizer to converge prematurely to a sub-optimal
solution.

The current approach was developed for use with
GENESIS software.  However, it is general enough to
be used with other similar structural optimization
programs.
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